This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is the identity of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| smndex1ibas.n | |- N e. NN |
||
| smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
||
| smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
||
| smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
||
| smndex1mgm.s | |- S = ( M |`s B ) |
||
| Assertion | smndex1id | |- I = ( 0g ` S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | |- M = ( EndoFMnd ` NN0 ) |
|
| 2 | smndex1ibas.n | |- N e. NN |
|
| 3 | smndex1ibas.i | |- I = ( x e. NN0 |-> ( x mod N ) ) |
|
| 4 | smndex1ibas.g | |- G = ( n e. ( 0 ..^ N ) |-> ( x e. NN0 |-> n ) ) |
|
| 5 | smndex1mgm.b | |- B = ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
|
| 6 | smndex1mgm.s | |- S = ( M |`s B ) |
|
| 7 | nn0ex | |- NN0 e. _V |
|
| 8 | 7 | mptex | |- ( x e. NN0 |-> ( x mod N ) ) e. _V |
| 9 | 3 8 | eqeltri | |- I e. _V |
| 10 | 9 | snid | |- I e. { I } |
| 11 | elun1 | |- ( I e. { I } -> I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) ) |
|
| 12 | 10 11 | ax-mp | |- I e. ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) |
| 13 | 12 5 | eleqtrri | |- I e. B |
| 14 | 1 2 3 4 5 6 | smndex1bas | |- ( Base ` S ) = B |
| 15 | 14 | eqcomi | |- B = ( Base ` S ) |
| 16 | 15 | a1i | |- ( I e. B -> B = ( Base ` S ) ) |
| 17 | snex | |- { I } e. _V |
|
| 18 | ovex | |- ( 0 ..^ N ) e. _V |
|
| 19 | snex | |- { ( G ` n ) } e. _V |
|
| 20 | 18 19 | iunex | |- U_ n e. ( 0 ..^ N ) { ( G ` n ) } e. _V |
| 21 | 17 20 | unex | |- ( { I } u. U_ n e. ( 0 ..^ N ) { ( G ` n ) } ) e. _V |
| 22 | 5 21 | eqeltri | |- B e. _V |
| 23 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 24 | 6 23 | ressplusg | |- ( B e. _V -> ( +g ` M ) = ( +g ` S ) ) |
| 25 | 22 24 | mp1i | |- ( I e. B -> ( +g ` M ) = ( +g ` S ) ) |
| 26 | id | |- ( I e. B -> I e. B ) |
|
| 27 | 1 2 3 | smndex1ibas | |- I e. ( Base ` M ) |
| 28 | 27 | a1i | |- ( I e. B -> I e. ( Base ` M ) ) |
| 29 | 1 2 3 4 5 | smndex1basss | |- B C_ ( Base ` M ) |
| 30 | 29 | sseli | |- ( a e. B -> a e. ( Base ` M ) ) |
| 31 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 32 | 1 31 23 | efmndov | |- ( ( I e. ( Base ` M ) /\ a e. ( Base ` M ) ) -> ( I ( +g ` M ) a ) = ( I o. a ) ) |
| 33 | 28 30 32 | syl2an | |- ( ( I e. B /\ a e. B ) -> ( I ( +g ` M ) a ) = ( I o. a ) ) |
| 34 | 1 2 3 4 5 6 | smndex1mndlem | |- ( a e. B -> ( ( I o. a ) = a /\ ( a o. I ) = a ) ) |
| 35 | 34 | simpld | |- ( a e. B -> ( I o. a ) = a ) |
| 36 | 35 | adantl | |- ( ( I e. B /\ a e. B ) -> ( I o. a ) = a ) |
| 37 | 33 36 | eqtrd | |- ( ( I e. B /\ a e. B ) -> ( I ( +g ` M ) a ) = a ) |
| 38 | 1 31 23 | efmndov | |- ( ( a e. ( Base ` M ) /\ I e. ( Base ` M ) ) -> ( a ( +g ` M ) I ) = ( a o. I ) ) |
| 39 | 30 28 38 | syl2anr | |- ( ( I e. B /\ a e. B ) -> ( a ( +g ` M ) I ) = ( a o. I ) ) |
| 40 | 34 | simprd | |- ( a e. B -> ( a o. I ) = a ) |
| 41 | 40 | adantl | |- ( ( I e. B /\ a e. B ) -> ( a o. I ) = a ) |
| 42 | 39 41 | eqtrd | |- ( ( I e. B /\ a e. B ) -> ( a ( +g ` M ) I ) = a ) |
| 43 | 16 25 26 37 42 | grpidd | |- ( I e. B -> I = ( 0g ` S ) ) |
| 44 | 13 43 | ax-mp | |- I = ( 0g ` S ) |