This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is the identity of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 16-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ||
| smndex1ibas.n | |||
| smndex1ibas.i | |||
| smndex1ibas.g | |||
| smndex1mgm.b | |||
| smndex1mgm.s | |||
| Assertion | smndex1id |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ||
| 2 | smndex1ibas.n | ||
| 3 | smndex1ibas.i | ||
| 4 | smndex1ibas.g | ||
| 5 | smndex1mgm.b | ||
| 6 | smndex1mgm.s | ||
| 7 | nn0ex | ||
| 8 | 7 | mptex | |
| 9 | 3 8 | eqeltri | |
| 10 | 9 | snid | |
| 11 | elun1 | ||
| 12 | 10 11 | ax-mp | |
| 13 | 12 5 | eleqtrri | |
| 14 | 1 2 3 4 5 6 | smndex1bas | |
| 15 | 14 | eqcomi | |
| 16 | 15 | a1i | |
| 17 | snex | ||
| 18 | ovex | ||
| 19 | snex | ||
| 20 | 18 19 | iunex | |
| 21 | 17 20 | unex | |
| 22 | 5 21 | eqeltri | |
| 23 | eqid | ||
| 24 | 6 23 | ressplusg | |
| 25 | 22 24 | mp1i | |
| 26 | id | ||
| 27 | 1 2 3 | smndex1ibas | |
| 28 | 27 | a1i | |
| 29 | 1 2 3 4 5 | smndex1basss | |
| 30 | 29 | sseli | |
| 31 | eqid | ||
| 32 | 1 31 23 | efmndov | |
| 33 | 28 30 32 | syl2an | |
| 34 | 1 2 3 4 5 6 | smndex1mndlem | |
| 35 | 34 | simpld | |
| 36 | 35 | adantl | |
| 37 | 33 36 | eqtrd | |
| 38 | 1 31 23 | efmndov | |
| 39 | 30 28 38 | syl2anr | |
| 40 | 34 | simprd | |
| 41 | 40 | adantl | |
| 42 | 39 41 | eqtrd | |
| 43 | 16 25 26 37 42 | grpidd | |
| 44 | 13 43 | ax-mp |