This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Wolf Lammen, 25-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin01gt0 | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | ⊢ 0 ∈ ℝ* | |
| 2 | 1re | ⊢ 1 ∈ ℝ | |
| 3 | elioc2 | ⊢ ( ( 0 ∈ ℝ* ∧ 1 ∈ ℝ ) → ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) ↔ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) ) |
| 5 | 4 | simp1bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℝ ) |
| 6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 7 | reexpcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℕ0 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℝ ) |
| 9 | 3re | ⊢ 3 ∈ ℝ | |
| 10 | 3ne0 | ⊢ 3 ≠ 0 | |
| 11 | redivcl | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 3 ∈ ℝ ∧ 3 ≠ 0 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) | |
| 12 | 9 10 11 | mp3an23 | ⊢ ( ( 𝐴 ↑ 3 ) ∈ ℝ → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
| 13 | 8 12 | syl | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) ∈ ℝ ) |
| 14 | 3z | ⊢ 3 ∈ ℤ | |
| 15 | expgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 3 ∈ ℤ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 3 ) ) | |
| 16 | 14 15 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 ↑ 3 ) ) |
| 17 | 16 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ∧ 𝐴 ≤ 1 ) → 0 < ( 𝐴 ↑ 3 ) ) |
| 18 | 4 17 | sylbi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 ↑ 3 ) ) |
| 19 | 0lt1 | ⊢ 0 < 1 | |
| 20 | 2 19 | pm3.2i | ⊢ ( 1 ∈ ℝ ∧ 0 < 1 ) |
| 21 | 3pos | ⊢ 0 < 3 | |
| 22 | 9 21 | pm3.2i | ⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
| 23 | 1lt3 | ⊢ 1 < 3 | |
| 24 | ltdiv2 | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ∧ ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) ) → ( 1 < 3 ↔ ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) ) | |
| 25 | 23 24 | mpbii | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ∧ ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
| 26 | 20 22 25 | mp3an12 | ⊢ ( ( ( 𝐴 ↑ 3 ) ∈ ℝ ∧ 0 < ( 𝐴 ↑ 3 ) ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
| 27 | 8 18 26 | syl2anc | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( ( 𝐴 ↑ 3 ) / 1 ) ) |
| 28 | 8 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ∈ ℂ ) |
| 29 | 28 | div1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 1 ) = ( 𝐴 ↑ 3 ) ) |
| 30 | 27 29 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < ( 𝐴 ↑ 3 ) ) |
| 31 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 32 | 31 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 1 ∈ ℕ0 ) |
| 33 | 1le3 | ⊢ 1 ≤ 3 | |
| 34 | 1z | ⊢ 1 ∈ ℤ | |
| 35 | 34 | eluz1i | ⊢ ( 3 ∈ ( ℤ≥ ‘ 1 ) ↔ ( 3 ∈ ℤ ∧ 1 ≤ 3 ) ) |
| 36 | 14 33 35 | mpbir2an | ⊢ 3 ∈ ( ℤ≥ ‘ 1 ) |
| 37 | 36 | a1i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 3 ∈ ( ℤ≥ ‘ 1 ) ) |
| 38 | 4 | simp2bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < 𝐴 ) |
| 39 | 0re | ⊢ 0 ∈ ℝ | |
| 40 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) | |
| 41 | 39 5 40 | sylancr | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 0 < 𝐴 → 0 ≤ 𝐴 ) ) |
| 42 | 38 41 | mpd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 ≤ 𝐴 ) |
| 43 | 4 | simp3bi | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ≤ 1 ) |
| 44 | 5 32 37 42 43 | leexp2rd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ≤ ( 𝐴 ↑ 1 ) ) |
| 45 | 5 | recnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 𝐴 ∈ ℂ ) |
| 46 | 45 | exp1d | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 1 ) = 𝐴 ) |
| 47 | 44 46 | breqtrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 ↑ 3 ) ≤ 𝐴 ) |
| 48 | 13 8 5 30 47 | ltletrd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 ↑ 3 ) / 3 ) < 𝐴 ) |
| 49 | 13 5 | posdifd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( ( 𝐴 ↑ 3 ) / 3 ) < 𝐴 ↔ 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) ) |
| 50 | 48 49 | mpbid | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ) |
| 51 | sin01bnd | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ∧ ( sin ‘ 𝐴 ) < 𝐴 ) ) | |
| 52 | 51 | simpld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) |
| 53 | 5 13 | resubcld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∈ ℝ ) |
| 54 | 5 | resincld | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( sin ‘ 𝐴 ) ∈ ℝ ) |
| 55 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∈ ℝ ∧ ( sin ‘ 𝐴 ) ∈ ℝ ) → ( ( 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) → 0 < ( sin ‘ 𝐴 ) ) ) | |
| 56 | 39 53 54 55 | mp3an2i | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → ( ( 0 < ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) ∧ ( 𝐴 − ( ( 𝐴 ↑ 3 ) / 3 ) ) < ( sin ‘ 𝐴 ) ) → 0 < ( sin ‘ 𝐴 ) ) ) |
| 57 | 50 52 56 | mp2and | ⊢ ( 𝐴 ∈ ( 0 (,] 1 ) → 0 < ( sin ‘ 𝐴 ) ) |