This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a positive real number less than or equal to 1 is positive. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Wolf Lammen, 25-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sin01gt0 | |- ( A e. ( 0 (,] 1 ) -> 0 < ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | 1re | |- 1 e. RR |
|
| 3 | elioc2 | |- ( ( 0 e. RR* /\ 1 e. RR ) -> ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( A e. ( 0 (,] 1 ) <-> ( A e. RR /\ 0 < A /\ A <_ 1 ) ) |
| 5 | 4 | simp1bi | |- ( A e. ( 0 (,] 1 ) -> A e. RR ) |
| 6 | 3nn0 | |- 3 e. NN0 |
|
| 7 | reexpcl | |- ( ( A e. RR /\ 3 e. NN0 ) -> ( A ^ 3 ) e. RR ) |
|
| 8 | 5 6 7 | sylancl | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. RR ) |
| 9 | 3re | |- 3 e. RR |
|
| 10 | 3ne0 | |- 3 =/= 0 |
|
| 11 | redivcl | |- ( ( ( A ^ 3 ) e. RR /\ 3 e. RR /\ 3 =/= 0 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
|
| 12 | 9 10 11 | mp3an23 | |- ( ( A ^ 3 ) e. RR -> ( ( A ^ 3 ) / 3 ) e. RR ) |
| 13 | 8 12 | syl | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) e. RR ) |
| 14 | 3z | |- 3 e. ZZ |
|
| 15 | expgt0 | |- ( ( A e. RR /\ 3 e. ZZ /\ 0 < A ) -> 0 < ( A ^ 3 ) ) |
|
| 16 | 14 15 | mp3an2 | |- ( ( A e. RR /\ 0 < A ) -> 0 < ( A ^ 3 ) ) |
| 17 | 16 | 3adant3 | |- ( ( A e. RR /\ 0 < A /\ A <_ 1 ) -> 0 < ( A ^ 3 ) ) |
| 18 | 4 17 | sylbi | |- ( A e. ( 0 (,] 1 ) -> 0 < ( A ^ 3 ) ) |
| 19 | 0lt1 | |- 0 < 1 |
|
| 20 | 2 19 | pm3.2i | |- ( 1 e. RR /\ 0 < 1 ) |
| 21 | 3pos | |- 0 < 3 |
|
| 22 | 9 21 | pm3.2i | |- ( 3 e. RR /\ 0 < 3 ) |
| 23 | 1lt3 | |- 1 < 3 |
|
| 24 | ltdiv2 | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( 3 e. RR /\ 0 < 3 ) /\ ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) ) -> ( 1 < 3 <-> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) ) |
|
| 25 | 23 24 | mpbii | |- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( 3 e. RR /\ 0 < 3 ) /\ ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
| 26 | 20 22 25 | mp3an12 | |- ( ( ( A ^ 3 ) e. RR /\ 0 < ( A ^ 3 ) ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
| 27 | 8 18 26 | syl2anc | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < ( ( A ^ 3 ) / 1 ) ) |
| 28 | 8 | recnd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) e. CC ) |
| 29 | 28 | div1d | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 1 ) = ( A ^ 3 ) ) |
| 30 | 27 29 | breqtrd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < ( A ^ 3 ) ) |
| 31 | 1nn0 | |- 1 e. NN0 |
|
| 32 | 31 | a1i | |- ( A e. ( 0 (,] 1 ) -> 1 e. NN0 ) |
| 33 | 1le3 | |- 1 <_ 3 |
|
| 34 | 1z | |- 1 e. ZZ |
|
| 35 | 34 | eluz1i | |- ( 3 e. ( ZZ>= ` 1 ) <-> ( 3 e. ZZ /\ 1 <_ 3 ) ) |
| 36 | 14 33 35 | mpbir2an | |- 3 e. ( ZZ>= ` 1 ) |
| 37 | 36 | a1i | |- ( A e. ( 0 (,] 1 ) -> 3 e. ( ZZ>= ` 1 ) ) |
| 38 | 4 | simp2bi | |- ( A e. ( 0 (,] 1 ) -> 0 < A ) |
| 39 | 0re | |- 0 e. RR |
|
| 40 | ltle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A -> 0 <_ A ) ) |
|
| 41 | 39 5 40 | sylancr | |- ( A e. ( 0 (,] 1 ) -> ( 0 < A -> 0 <_ A ) ) |
| 42 | 38 41 | mpd | |- ( A e. ( 0 (,] 1 ) -> 0 <_ A ) |
| 43 | 4 | simp3bi | |- ( A e. ( 0 (,] 1 ) -> A <_ 1 ) |
| 44 | 5 32 37 42 43 | leexp2rd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) <_ ( A ^ 1 ) ) |
| 45 | 5 | recnd | |- ( A e. ( 0 (,] 1 ) -> A e. CC ) |
| 46 | 45 | exp1d | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 1 ) = A ) |
| 47 | 44 46 | breqtrd | |- ( A e. ( 0 (,] 1 ) -> ( A ^ 3 ) <_ A ) |
| 48 | 13 8 5 30 47 | ltletrd | |- ( A e. ( 0 (,] 1 ) -> ( ( A ^ 3 ) / 3 ) < A ) |
| 49 | 13 5 | posdifd | |- ( A e. ( 0 (,] 1 ) -> ( ( ( A ^ 3 ) / 3 ) < A <-> 0 < ( A - ( ( A ^ 3 ) / 3 ) ) ) ) |
| 50 | 48 49 | mpbid | |- ( A e. ( 0 (,] 1 ) -> 0 < ( A - ( ( A ^ 3 ) / 3 ) ) ) |
| 51 | sin01bnd | |- ( A e. ( 0 (,] 1 ) -> ( ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) /\ ( sin ` A ) < A ) ) |
|
| 52 | 51 | simpld | |- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) |
| 53 | 5 13 | resubcld | |- ( A e. ( 0 (,] 1 ) -> ( A - ( ( A ^ 3 ) / 3 ) ) e. RR ) |
| 54 | 5 | resincld | |- ( A e. ( 0 (,] 1 ) -> ( sin ` A ) e. RR ) |
| 55 | lttr | |- ( ( 0 e. RR /\ ( A - ( ( A ^ 3 ) / 3 ) ) e. RR /\ ( sin ` A ) e. RR ) -> ( ( 0 < ( A - ( ( A ^ 3 ) / 3 ) ) /\ ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) -> 0 < ( sin ` A ) ) ) |
|
| 56 | 39 53 54 55 | mp3an2i | |- ( A e. ( 0 (,] 1 ) -> ( ( 0 < ( A - ( ( A ^ 3 ) / 3 ) ) /\ ( A - ( ( A ^ 3 ) / 3 ) ) < ( sin ` A ) ) -> 0 < ( sin ` A ) ) ) |
| 57 | 50 52 56 | mp2and | |- ( A e. ( 0 (,] 1 ) -> 0 < ( sin ` A ) ) |