This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the integers from M to N inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fzind2.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| fzind2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | ||
| fzind2.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| fzind2.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | ||
| fzind2.5 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜓 ) | ||
| fzind2.6 | ⊢ ( 𝑦 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | fzind2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzind2.1 | ⊢ ( 𝑥 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | fzind2.2 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | fzind2.3 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | fzind2.4 | ⊢ ( 𝑥 = 𝐾 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | fzind2.5 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜓 ) | |
| 6 | fzind2.6 | ⊢ ( 𝑦 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | elfz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 8 | anass | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) ) | |
| 9 | df-3an | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) ) | |
| 10 | 9 | anbi1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 11 | 3anass | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ↔ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) ) |
| 13 | 8 10 12 | 3bitr4i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 14 | 7 13 | bitri | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) ) |
| 15 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
| 16 | 15 5 | sylbir | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → 𝜓 ) |
| 17 | 3anass | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ↔ ( 𝑦 ∈ ℤ ∧ ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ) | |
| 18 | elfzo | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑦 ∈ ( 𝑀 ..^ 𝑁 ) ↔ ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ) | |
| 19 | 18 6 | biimtrrdi | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 20 | 19 | 3coml | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 21 | 20 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑦 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) → ( 𝜒 → 𝜃 ) ) ) |
| 22 | 21 | impr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ ( 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) ) → ( 𝜒 → 𝜃 ) ) |
| 23 | 17 22 | sylan2b | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁 ) ) → ( 𝜒 → 𝜃 ) ) |
| 24 | 1 2 3 4 16 23 | fzind | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁 ) ) → 𝜏 ) |
| 25 | 14 24 | sylbi | ⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) → 𝜏 ) |