This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| Assertion | satefvfmla1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 Sat∈ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| 2 | 1 | ovexi | ⊢ 𝑋 ∈ V |
| 3 | 2 | jctr | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) ) |
| 5 | satefv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑋 ∈ V ) → ( 𝑀 Sat∈ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 Sat∈ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) ) |
| 7 | sqxpexg | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 × 𝑀 ) ∈ V ) | |
| 8 | inex2g | ⊢ ( ( 𝑀 × 𝑀 ) ∈ V → ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑀 ∈ 𝑉 → ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) |
| 10 | 9 | ancli | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ) |
| 12 | satom | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) |
| 14 | 13 | fveq1d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) = ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) ) |
| 15 | satfun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) | |
| 16 | 11 15 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| 17 | 16 | ffund | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
| 18 | 13 | eqcomd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
| 19 | 18 | funeqd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ↔ Fun ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) ) |
| 20 | 17 19 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ) |
| 21 | 1onn | ⊢ 1o ∈ ω | |
| 22 | 21 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 1o ∈ ω ) |
| 23 | 1 | 2goelgoanfmla1 | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |
| 24 | 23 | 3adant1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |
| 25 | 21 | a1i | ⊢ ( 𝑀 ∈ 𝑉 → 1o ∈ ω ) |
| 26 | satfdmfmla | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ∧ 1o ∈ ω ) → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) | |
| 27 | 9 25 26 | mpd3an23 | ⊢ ( 𝑀 ∈ 𝑉 → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) = ( Fmla ‘ 1o ) ) |
| 29 | 24 28 | eleqtrrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ) |
| 30 | eqid | ⊢ ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) = ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) | |
| 31 | 30 | fviunfun | ⊢ ( ( Fun ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ∧ 1o ∈ ω ∧ 𝑋 ∈ dom ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ) → ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
| 32 | 20 22 29 31 | syl3anc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∪ 𝑖 ∈ ω ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 𝑖 ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
| 33 | 14 32 | eqtrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑋 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) ) |
| 34 | 1 | satfv1fvfmla1 | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( E ∩ ( 𝑀 × 𝑀 ) ) ∈ V ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) |
| 35 | 10 34 | syl3an1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } ) |
| 36 | brin | ⊢ ( ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) | |
| 37 | elmapi | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → 𝑎 : ω ⟶ 𝑀 ) | |
| 38 | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐼 ∈ ω ) → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) | |
| 39 | 38 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐼 ∈ ω → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) ) |
| 40 | 37 39 | syl | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐼 ∈ ω → ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ) ) |
| 41 | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐽 ∈ ω ) → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) | |
| 42 | 41 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐽 ∈ ω → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
| 43 | 37 42 | syl | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐽 ∈ ω → ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
| 44 | 40 43 | anim12d | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
| 45 | 44 | com12 | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) ) |
| 47 | 46 | imp | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) |
| 48 | brxp | ⊢ ( ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐽 ) ∈ 𝑀 ) ) | |
| 49 | 47 48 | sylibr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) |
| 50 | 49 | biantrud | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ↔ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ) ) |
| 51 | fvex | ⊢ ( 𝑎 ‘ 𝐽 ) ∈ V | |
| 52 | 51 | epeli | ⊢ ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) |
| 53 | 50 52 | bitr3di | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ( 𝑎 ‘ 𝐼 ) E ( 𝑎 ‘ 𝐽 ) ∧ ( 𝑎 ‘ 𝐼 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐽 ) ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 54 | 36 53 | bitrid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 55 | 54 | notbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ) ) |
| 56 | brin | ⊢ ( ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) | |
| 57 | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐾 ∈ ω ) → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) | |
| 58 | 57 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐾 ∈ ω → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) ) |
| 59 | 37 58 | syl | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐾 ∈ ω → ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ) ) |
| 60 | ffvelcdm | ⊢ ( ( 𝑎 : ω ⟶ 𝑀 ∧ 𝐿 ∈ ω ) → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) | |
| 61 | 60 | ex | ⊢ ( 𝑎 : ω ⟶ 𝑀 → ( 𝐿 ∈ ω → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
| 62 | 37 61 | syl | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( 𝐿 ∈ ω → ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
| 63 | 59 62 | anim12d | ⊢ ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
| 64 | 63 | com12 | ⊢ ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
| 65 | 64 | 3ad2ant3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑎 ∈ ( 𝑀 ↑m ω ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) ) |
| 66 | 65 | imp | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) |
| 67 | brxp | ⊢ ( ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) ∈ 𝑀 ∧ ( 𝑎 ‘ 𝐿 ) ∈ 𝑀 ) ) | |
| 68 | 66 67 | sylibr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) |
| 69 | 68 | biantrud | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ↔ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ) ) |
| 70 | fvex | ⊢ ( 𝑎 ‘ 𝐿 ) ∈ V | |
| 71 | 70 | epeli | ⊢ ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) |
| 72 | 69 71 | bitr3di | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ( 𝑎 ‘ 𝐾 ) E ( 𝑎 ‘ 𝐿 ) ∧ ( 𝑎 ‘ 𝐾 ) ( 𝑀 × 𝑀 ) ( 𝑎 ‘ 𝐿 ) ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
| 73 | 56 72 | bitrid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
| 74 | 73 | notbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) |
| 75 | 55 74 | orbi12d | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑎 ∈ ( 𝑀 ↑m ω ) ) → ( ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) ) ) |
| 76 | 75 | rabbidva | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ( E ∩ ( 𝑀 × 𝑀 ) ) ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |
| 77 | 35 76 | eqtrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |
| 78 | 6 33 77 | 3eqtrd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 Sat∈ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) ∈ ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) ∈ ( 𝑎 ‘ 𝐿 ) ) } ) |