This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Example of a valuation of a simplified satisfaction predicate over the ordinal numbers as model for a Godel-set of membership using the properties of a successor: ( S2o ) = Z e. suc Z = ( S2o ) . Remark: the indices 1o and 2o are intentionally reversed to distinguish them from elements of the model: ( 2o e.g 1o ) should not be confused with 2o e. 1o , which is false. (Contributed by AV, 19-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ex-sategoelelomsuc.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ) | |
| Assertion | ex-sategoelelomsuc | ⊢ ( 𝑍 ∈ ω → 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-sategoelelomsuc.s | ⊢ 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ) | |
| 2 | id | ⊢ ( 𝑍 ∈ ω → 𝑍 ∈ ω ) | |
| 3 | peano2 | ⊢ ( 𝑍 ∈ ω → suc 𝑍 ∈ ω ) | |
| 4 | 2 3 | ifcld | ⊢ ( 𝑍 ∈ ω → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ∈ ω ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 ∈ ω ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ∈ ω ) |
| 6 | 5 1 | fmptd | ⊢ ( 𝑍 ∈ ω → 𝑆 : ω ⟶ ω ) |
| 7 | omex | ⊢ ω ∈ V | |
| 8 | 7 | a1i | ⊢ ( 𝑍 ∈ ω → ω ∈ V ) |
| 9 | 8 8 | elmapd | ⊢ ( 𝑍 ∈ ω → ( 𝑆 ∈ ( ω ↑m ω ) ↔ 𝑆 : ω ⟶ ω ) ) |
| 10 | 6 9 | mpbird | ⊢ ( 𝑍 ∈ ω → 𝑆 ∈ ( ω ↑m ω ) ) |
| 11 | sucidg | ⊢ ( 𝑍 ∈ ω → 𝑍 ∈ suc 𝑍 ) | |
| 12 | 1 | a1i | ⊢ ( 𝑍 ∈ ω → 𝑆 = ( 𝑥 ∈ ω ↦ if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) ) ) |
| 13 | iftrue | ⊢ ( 𝑥 = 2o → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = 𝑍 ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 = 2o ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = 𝑍 ) |
| 15 | 2onn | ⊢ 2o ∈ ω | |
| 16 | 15 | a1i | ⊢ ( 𝑍 ∈ ω → 2o ∈ ω ) |
| 17 | 12 14 16 2 | fvmptd | ⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 2o ) = 𝑍 ) |
| 18 | 1one2o | ⊢ 1o ≠ 2o | |
| 19 | 18 | neii | ⊢ ¬ 1o = 2o |
| 20 | eqeq1 | ⊢ ( 𝑥 = 1o → ( 𝑥 = 2o ↔ 1o = 2o ) ) | |
| 21 | 19 20 | mtbiri | ⊢ ( 𝑥 = 1o → ¬ 𝑥 = 2o ) |
| 22 | 21 | iffalsed | ⊢ ( 𝑥 = 1o → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = suc 𝑍 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝑍 ∈ ω ∧ 𝑥 = 1o ) → if ( 𝑥 = 2o , 𝑍 , suc 𝑍 ) = suc 𝑍 ) |
| 24 | 1onn | ⊢ 1o ∈ ω | |
| 25 | 24 | a1i | ⊢ ( 𝑍 ∈ ω → 1o ∈ ω ) |
| 26 | 12 23 25 3 | fvmptd | ⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 1o ) = suc 𝑍 ) |
| 27 | 11 17 26 | 3eltr4d | ⊢ ( 𝑍 ∈ ω → ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) |
| 28 | 15 24 | pm3.2i | ⊢ ( 2o ∈ ω ∧ 1o ∈ ω ) |
| 29 | 7 28 | pm3.2i | ⊢ ( ω ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) |
| 30 | eqid | ⊢ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) = ( ω Sat∈ ( 2o ∈𝑔 1o ) ) | |
| 31 | 30 | sategoelfvb | ⊢ ( ( ω ∈ V ∧ ( 2o ∈ ω ∧ 1o ∈ ω ) ) → ( 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( ω ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
| 32 | 29 31 | mp1i | ⊢ ( 𝑍 ∈ ω → ( 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ↔ ( 𝑆 ∈ ( ω ↑m ω ) ∧ ( 𝑆 ‘ 2o ) ∈ ( 𝑆 ‘ 1o ) ) ) ) |
| 33 | 10 27 32 | mpbir2and | ⊢ ( 𝑍 ∈ ω → 𝑆 ∈ ( ω Sat∈ ( 2o ∈𝑔 1o ) ) ) |