This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate at two Godel-sets of membership combined with a Godel-set for NAND. (Contributed by AV, 17-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| Assertion | satfv1fvfmla1 | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| 2 | simpl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝑀 ∈ 𝑉 ) | |
| 3 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝐸 ∈ 𝑊 ) | |
| 4 | 1onn | ⊢ 1o ∈ ω | |
| 5 | 4 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 1o ∈ ω ) |
| 6 | 2 3 5 | 3jca | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) ) |
| 8 | satffun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 1o ∈ ω ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) |
| 10 | simp2l | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐼 ∈ ω ) | |
| 11 | simp2r | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐽 ∈ ω ) | |
| 12 | simp3l | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐾 ∈ ω ) | |
| 13 | simp3r | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐿 ∈ ω ) | |
| 14 | eqid | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } | |
| 15 | 1 14 | pm3.2i | ⊢ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |
| 16 | 15 | a1i | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) |
| 17 | oveq1 | ⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈𝑔 𝑙 ) = ( 𝐾 ∈𝑔 𝑙 ) ) | |
| 18 | 17 | oveq2d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑎 ‘ 𝑘 ) = ( 𝑎 ‘ 𝐾 ) ) | |
| 21 | 20 | breq1d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) |
| 22 | 21 | notbid | ⊢ ( 𝑘 = 𝐾 → ( ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) |
| 23 | 22 | orbi2d | ⊢ ( 𝑘 = 𝐾 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 24 | 23 | rabbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 25 | 24 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 26 | 19 25 | anbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 27 | oveq2 | ⊢ ( 𝑙 = 𝐿 → ( 𝐾 ∈𝑔 𝑙 ) = ( 𝐾 ∈𝑔 𝐿 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑙 = 𝐿 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) |
| 29 | 28 | eqeq2d | ⊢ ( 𝑙 = 𝐿 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) |
| 30 | fveq2 | ⊢ ( 𝑙 = 𝐿 → ( 𝑎 ‘ 𝑙 ) = ( 𝑎 ‘ 𝐿 ) ) | |
| 31 | 30 | breq2d | ⊢ ( 𝑙 = 𝐿 → ( ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) |
| 32 | 31 | notbid | ⊢ ( 𝑙 = 𝐿 → ( ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ↔ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) |
| 33 | 32 | orbi2d | ⊢ ( 𝑙 = 𝐿 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) ) ) |
| 34 | 33 | rabbidv | ⊢ ( 𝑙 = 𝐿 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |
| 35 | 34 | eqeq2d | ⊢ ( 𝑙 = 𝐿 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) |
| 36 | 29 35 | anbi12d | ⊢ ( 𝑙 = 𝐿 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) ) |
| 37 | 26 36 | rspc2ev | ⊢ ( ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ∧ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 38 | 12 13 16 37 | syl3anc | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 39 | 38 | orcd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 40 | oveq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝑗 ) ) | |
| 41 | 40 | oveq1d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 42 | 41 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 43 | fveq2 | ⊢ ( 𝑖 = 𝐼 → ( 𝑎 ‘ 𝑖 ) = ( 𝑎 ‘ 𝐼 ) ) | |
| 44 | 43 | breq1d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 45 | 44 | notbid | ⊢ ( 𝑖 = 𝐼 → ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) |
| 46 | 45 | orbi1d | ⊢ ( 𝑖 = 𝐼 → ( ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 47 | 46 | rabbidv | ⊢ ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 48 | 47 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 49 | 42 48 | anbi12d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 50 | 49 | 2rexbidv | ⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 51 | eqidd | ⊢ ( 𝑖 = 𝐼 → 𝑛 = 𝑛 ) | |
| 52 | 51 40 | goaleq12d | ⊢ ( 𝑖 = 𝐼 → ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) |
| 53 | 52 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ) ) |
| 54 | eqeq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 = 𝑛 ↔ 𝐼 = 𝑛 ) ) | |
| 55 | biidd | ⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) | |
| 56 | 43 | breq1d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) |
| 57 | 56 44 | ifpbi23d | ⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) |
| 58 | 54 55 57 | ifpbi123d | ⊢ ( 𝑖 = 𝐼 → ( if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) |
| 59 | 58 | ralbidv | ⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ) ) |
| 60 | 59 | rabbidv | ⊢ ( 𝑖 = 𝐼 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) |
| 61 | 60 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) |
| 62 | 53 61 | anbi12d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 63 | 62 | rexbidv | ⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 64 | 50 63 | orbi12d | ⊢ ( 𝑖 = 𝐼 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 65 | oveq2 | ⊢ ( 𝑗 = 𝐽 → ( 𝐼 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝐽 ) ) | |
| 66 | 65 | oveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 67 | 66 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) |
| 68 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( 𝑎 ‘ 𝑗 ) = ( 𝑎 ‘ 𝐽 ) ) | |
| 69 | 68 | breq2d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 70 | 69 | notbid | ⊢ ( 𝑗 = 𝐽 → ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 71 | 70 | orbi1d | ⊢ ( 𝑗 = 𝐽 → ( ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ↔ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) ) ) |
| 72 | 71 | rabbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) |
| 73 | 72 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) |
| 74 | 67 73 | anbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 75 | 74 | 2rexbidv | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 76 | eqidd | ⊢ ( 𝑗 = 𝐽 → 𝑛 = 𝑛 ) | |
| 77 | 76 65 | goaleq12d | ⊢ ( 𝑗 = 𝐽 → ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) |
| 78 | 77 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ) ) |
| 79 | eqeq1 | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 = 𝑛 ↔ 𝐽 = 𝑛 ) ) | |
| 80 | biidd | ⊢ ( 𝑗 = 𝐽 → ( 𝑧 𝐸 𝑧 ↔ 𝑧 𝐸 𝑧 ) ) | |
| 81 | 68 | breq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ↔ 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) |
| 82 | 79 80 81 | ifpbi123d | ⊢ ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) |
| 83 | biidd | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ↔ ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 ) ) | |
| 84 | 79 83 69 | ifpbi123d | ⊢ ( 𝑗 = 𝐽 → ( if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ↔ if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) |
| 85 | 82 84 | ifpbi23d | ⊢ ( 𝑗 = 𝐽 → ( if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) |
| 86 | 85 | ralbidv | ⊢ ( 𝑗 = 𝐽 → ( ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) ↔ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) ) ) |
| 87 | 86 | rabbidv | ⊢ ( 𝑗 = 𝐽 → { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) |
| 88 | 87 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) |
| 89 | 78 88 | anbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 90 | 89 | rexbidv | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) |
| 91 | 75 90 | orbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) ) |
| 92 | 64 91 | rspc2ev | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝐼 ∈𝑔 𝐽 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝐼 = 𝑛 , if- ( 𝐽 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝐽 ) ) , if- ( 𝐽 = 𝑛 , ( 𝑎 ‘ 𝐼 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ) ) } ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 93 | 10 11 39 92 | syl3anc | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 94 | 1 | ovexi | ⊢ 𝑋 ∈ V |
| 95 | 94 | a1i | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ V ) |
| 96 | ovex | ⊢ ( 𝑀 ↑m ω ) ∈ V | |
| 97 | 96 | rabex | ⊢ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ∈ V |
| 98 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ↔ 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ) ) | |
| 99 | eqeq1 | ⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) | |
| 100 | 98 99 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 101 | 100 | 2rexbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ) ) |
| 102 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 103 | eqeq1 | ⊢ ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } → ( 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ↔ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) | |
| 104 | 102 103 | bi2anan9 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 105 | 104 | rexbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ↔ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) |
| 106 | 101 105 | orbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 107 | 106 | 2rexbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 108 | 107 | opelopabga | ⊢ ( ( 𝑋 ∈ V ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ∈ V ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 109 | 95 97 108 | sylancl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑋 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) ) ) |
| 110 | 93 109 | mpbird | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) |
| 111 | 110 | olcd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 112 | elun | ⊢ ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ↔ ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∨ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) | |
| 113 | 111 112 | sylibr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 114 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 115 | 114 | satfv1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) |
| 116 | 115 | eleq2d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) |
| 117 | 116 | 3ad2ant1 | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ↔ 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑙 ) ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ∨ ¬ ( 𝑎 ‘ 𝑘 ) 𝐸 ( 𝑎 ‘ 𝑙 ) ) } ) ∨ ∃ 𝑛 ∈ ω ( 𝑥 = ∀𝑔 𝑛 ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑧 ∈ 𝑀 if- ( 𝑖 = 𝑛 , if- ( 𝑗 = 𝑛 , 𝑧 𝐸 𝑧 , 𝑧 𝐸 ( 𝑎 ‘ 𝑗 ) ) , if- ( 𝑗 = 𝑛 , ( 𝑎 ‘ 𝑖 ) 𝐸 𝑧 , ( 𝑎 ‘ 𝑖 ) 𝐸 ( 𝑎 ‘ 𝑗 ) ) ) } ) ) } ) ) ) |
| 118 | 113 117 | mpbird | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ) |
| 119 | funopfv | ⊢ ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( 〈 𝑋 , { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } 〉 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) ) | |
| 120 | 9 118 119 | sylc | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 1o ) ‘ 𝑋 ) = { 𝑎 ∈ ( 𝑀 ↑m ω ) ∣ ( ¬ ( 𝑎 ‘ 𝐼 ) 𝐸 ( 𝑎 ‘ 𝐽 ) ∨ ¬ ( 𝑎 ‘ 𝐾 ) 𝐸 ( 𝑎 ‘ 𝐿 ) ) } ) |