This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 29-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satff | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑥 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑥 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| 3 | entric | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥 ) ) |
| 5 | nnsdomo | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑥 ≺ 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ≺ 𝑦 ↔ 𝑥 ⊊ 𝑦 ) ) |
| 7 | pm3.22 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ) ) | |
| 8 | 7 | anim2i | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ) ) ) |
| 9 | pssss | ⊢ ( 𝑥 ⊊ 𝑦 → 𝑥 ⊆ 𝑦 ) | |
| 10 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 11 | 10 | satfsschain | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ) ) → ( 𝑥 ⊆ 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ) ) |
| 12 | 11 | imp | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ) ) ∧ 𝑥 ⊆ 𝑦 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ) |
| 13 | 8 9 12 | syl2an | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ) |
| 14 | 13 | orcd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 15 | 14 | ex | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ⊊ 𝑦 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 16 | 6 15 | sylbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ≺ 𝑦 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 17 | nneneq | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑥 ≈ 𝑦 ↔ 𝑥 = 𝑦 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ≈ 𝑦 ↔ 𝑥 = 𝑦 ) ) |
| 19 | ssid | ⊢ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) | |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) = ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ) | |
| 21 | 19 20 | sseqtrrid | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) |
| 22 | 21 | olcd | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 23 | 18 22 | biimtrdi | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑥 ≈ 𝑦 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 24 | nnsdomo | ⊢ ( ( 𝑦 ∈ ω ∧ 𝑥 ∈ ω ) → ( 𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) | |
| 25 | 24 | ancoms | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) → ( 𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
| 26 | 25 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥 ) ) |
| 27 | 10 | satfsschain | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑦 ⊆ 𝑥 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 28 | pssss | ⊢ ( 𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥 ) | |
| 29 | 27 28 | impel | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) ∧ 𝑦 ⊊ 𝑥 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) |
| 30 | 29 | olcd | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) ∧ 𝑦 ⊊ 𝑥 ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 31 | 30 | ex | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑦 ⊊ 𝑥 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 32 | 26 31 | sylbid | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( 𝑦 ≺ 𝑥 → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 33 | 16 23 32 | 3jaod | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( 𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥 ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 34 | 4 33 | mpd | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( 𝑥 ∈ ω ∧ 𝑦 ∈ ω ) ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 35 | 34 | expr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑥 ∈ ω ) → ( 𝑦 ∈ ω → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 36 | 35 | ralrimiv | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑥 ∈ ω ) → ∀ 𝑦 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) |
| 37 | 2 36 | jca | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ 𝑥 ∈ ω ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ ∀ 𝑦 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 38 | 37 | ralrimiva | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ∀ 𝑥 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ ∀ 𝑦 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) ) |
| 39 | fvex | ⊢ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ∈ V | |
| 40 | 20 39 | fiun | ⊢ ( ∀ 𝑥 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ∧ ∀ 𝑦 ∈ ω ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ∨ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑦 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) ) → ∪ 𝑥 ∈ ω ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| 41 | 38 40 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ∪ 𝑥 ∈ ω ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |
| 42 | satom | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ω ) = ∪ 𝑥 ∈ ω ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) ) | |
| 43 | fmla | ⊢ ( Fmla ‘ ω ) = ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) | |
| 44 | 43 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Fmla ‘ ω ) = ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ) |
| 45 | 42 44 | feq12d | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ↔ ∪ 𝑥 ∈ ω ( ( 𝑀 Sat 𝐸 ) ‘ 𝑥 ) : ∪ 𝑥 ∈ ω ( Fmla ‘ 𝑥 ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) ) |
| 46 | 41 45 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ω ) : ( Fmla ‘ ω ) ⟶ 𝒫 ( 𝑀 ↑m ω ) ) |