This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Godel-sets of membership combined with a Godel-set for NAND is a Godel formula of height 1. (Contributed by AV, 17-Nov-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| Assertion | 2goelgoanfmla1 | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv1fvfmla1.x | ⊢ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐼 ∈ ω ) | |
| 3 | simplr | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐽 ∈ ω ) | |
| 4 | simprl | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐾 ∈ ω ) | |
| 5 | simprr | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝐿 ∈ ω ) | |
| 6 | oveq2 | ⊢ ( 𝑛 = 𝐿 → ( 𝐾 ∈𝑔 𝑛 ) = ( 𝐾 ∈𝑔 𝐿 ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑛 = 𝐿 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) |
| 8 | 7 | eqeq2d | ⊢ ( 𝑛 = 𝐿 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) ∧ 𝑛 = 𝐿 ) → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) ) |
| 10 | 1 | a1i | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝐿 ) ) ) |
| 11 | 5 9 10 | rspcedvd | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) |
| 12 | 11 | orcd | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝑗 ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) |
| 15 | 14 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) |
| 17 | eqidd | ⊢ ( 𝑖 = 𝐼 → 𝑘 = 𝑘 ) | |
| 18 | 17 13 | goaleq12d | ⊢ ( 𝑖 = 𝐼 → ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑖 = 𝐼 → ( 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) ) |
| 20 | 16 19 | orbi12d | ⊢ ( 𝑖 = 𝐼 → ( ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) ) ) |
| 21 | oveq2 | ⊢ ( 𝑗 = 𝐽 → ( 𝐼 ∈𝑔 𝑗 ) = ( 𝐼 ∈𝑔 𝐽 ) ) | |
| 22 | 21 | oveq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) |
| 23 | 22 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) |
| 24 | 23 | rexbidv | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) |
| 25 | eqidd | ⊢ ( 𝑗 = 𝐽 → 𝑘 = 𝑘 ) | |
| 26 | 25 21 | goaleq12d | ⊢ ( 𝑗 = 𝐽 → ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) |
| 27 | 26 | eqeq2d | ⊢ ( 𝑗 = 𝐽 → ( 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) ) |
| 28 | 24 27 | orbi12d | ⊢ ( 𝑗 = 𝐽 → ( ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) ) ) |
| 29 | oveq1 | ⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈𝑔 𝑛 ) = ( 𝐾 ∈𝑔 𝑛 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑘 = 𝐾 → ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) |
| 31 | 30 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) ) |
| 32 | 31 | rexbidv | ⊢ ( 𝑘 = 𝐾 → ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ) ) |
| 33 | id | ⊢ ( 𝑘 = 𝐾 → 𝑘 = 𝐾 ) | |
| 34 | eqidd | ⊢ ( 𝑘 = 𝐾 → ( 𝐼 ∈𝑔 𝐽 ) = ( 𝐼 ∈𝑔 𝐽 ) ) | |
| 35 | 33 34 | goaleq12d | ⊢ ( 𝑘 = 𝐾 → ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) = ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) |
| 36 | 35 | eqeq2d | ⊢ ( 𝑘 = 𝐾 → ( 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ↔ 𝑋 = ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) |
| 37 | 32 36 | orbi12d | ⊢ ( 𝑘 = 𝐾 → ( ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝐼 ∈𝑔 𝐽 ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) ) |
| 38 | 20 28 37 | rspc3ev | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ∧ 𝐾 ∈ ω ) ∧ ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝐼 ∈𝑔 𝐽 ) ⊼𝑔 ( 𝐾 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝐾 ( 𝐼 ∈𝑔 𝐽 ) ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 39 | 2 3 4 12 38 | syl31anc | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 40 | 1 | ovexi | ⊢ 𝑋 ∈ V |
| 41 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) | |
| 42 | 41 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ↔ ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ) ) |
| 43 | eqeq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) | |
| 44 | 42 43 | orbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 45 | 44 | rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 46 | 45 | 2rexbidv | ⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) ) |
| 47 | 40 46 | elab | ⊢ ( 𝑋 ∈ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑋 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑋 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) ) |
| 48 | 39 47 | sylibr | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) |
| 49 | 48 | olcd | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → ( 𝑋 ∈ ( { ∅ } × ( ω × ω ) ) ∨ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) |
| 50 | elun | ⊢ ( 𝑋 ∈ ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ↔ ( 𝑋 ∈ ( { ∅ } × ( ω × ω ) ) ∨ 𝑋 ∈ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) | |
| 51 | 49 50 | sylibr | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) ) |
| 52 | fmla1 | ⊢ ( Fmla ‘ 1o ) = ( ( { ∅ } × ( ω × ω ) ) ∪ { 𝑥 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ∃ 𝑘 ∈ ω ( ∃ 𝑛 ∈ ω 𝑥 = ( ( 𝑖 ∈𝑔 𝑗 ) ⊼𝑔 ( 𝑘 ∈𝑔 𝑛 ) ) ∨ 𝑥 = ∀𝑔 𝑘 ( 𝑖 ∈𝑔 𝑗 ) ) } ) | |
| 53 | 51 52 | eleqtrrdi | ⊢ ( ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ∧ ( 𝐾 ∈ ω ∧ 𝐿 ∈ ω ) ) → 𝑋 ∈ ( Fmla ‘ 1o ) ) |