This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The simplified satisfaction predicate as function over wff codes in the model M at the code U . (Contributed by AV, 30-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satefv | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → ( 𝑀 Sat∈ 𝑈 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sate | ⊢ Sat∈ = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → Sat∈ = ( 𝑚 ∈ V , 𝑢 ∈ V ↦ ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) ) ) |
| 3 | id | ⊢ ( 𝑚 = 𝑀 → 𝑚 = 𝑀 ) | |
| 4 | 3 | sqxpeqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 × 𝑚 ) = ( 𝑀 × 𝑀 ) ) |
| 5 | 4 | ineq2d | ⊢ ( 𝑚 = 𝑀 → ( E ∩ ( 𝑚 × 𝑚 ) ) = ( E ∩ ( 𝑀 × 𝑀 ) ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) = ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ) |
| 7 | 6 | fveq1d | ⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) = ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ) |
| 9 | simpr | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → 𝑢 = 𝑈 ) | |
| 10 | 8 9 | fveq12d | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) → ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) ∧ ( 𝑚 = 𝑀 ∧ 𝑢 = 𝑈 ) ) → ( ( ( 𝑚 Sat ( E ∩ ( 𝑚 × 𝑚 ) ) ) ‘ ω ) ‘ 𝑢 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |
| 12 | elex | ⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → 𝑀 ∈ V ) |
| 14 | elex | ⊢ ( 𝑈 ∈ 𝑊 → 𝑈 ∈ V ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → 𝑈 ∈ V ) |
| 16 | fvexd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ∈ V ) | |
| 17 | 2 11 13 15 16 | ovmpod | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑈 ∈ 𝑊 ) → ( 𝑀 Sat∈ 𝑈 ) = ( ( ( 𝑀 Sat ( E ∩ ( 𝑀 × 𝑀 ) ) ) ‘ ω ) ‘ 𝑈 ) ) |