This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient condition for an intersection to be a set. Commuted form of inex1g . (Contributed by Peter Mazsa, 19-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inex2g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∩ 𝐴 ) ∈ V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom | ⊢ ( 𝐵 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) | |
| 2 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 3 | 1 2 | eqeltrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐵 ∩ 𝐴 ) ∈ V ) |