This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Successor value for the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | ||
| ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | ||
| Assertion | ruclem7 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | |
| 4 | ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | |
| 5 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 5 6 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 | seqp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) |
| 10 | 4 | fveq1i | ⊢ ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ ( 𝑁 + 1 ) ) |
| 11 | 4 | fveq1i | ⊢ ( 𝐺 ‘ 𝑁 ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) |
| 12 | 11 | oveq1i | ⊢ ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) = ( ( seq 0 ( 𝐷 , 𝐶 ) ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) |
| 13 | 9 10 12 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) ) |
| 14 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ∈ ℕ ) |
| 16 | 15 | nnne0d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 + 1 ) ≠ 0 ) |
| 17 | 16 | necomd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 0 ≠ ( 𝑁 + 1 ) ) |
| 18 | 3 | equncomi | ⊢ 𝐶 = ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) |
| 19 | 18 | fveq1i | ⊢ ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ ( 𝑁 + 1 ) ) |
| 20 | fvunsn | ⊢ ( 0 ≠ ( 𝑁 + 1 ) → ( ( 𝐹 ∪ { 〈 0 , 〈 0 , 1 〉 〉 } ) ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) | |
| 21 | 19 20 | eqtrid | ⊢ ( 0 ≠ ( 𝑁 + 1 ) → ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
| 22 | 17 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐶 ‘ ( 𝑁 + 1 ) ) = ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) |
| 23 | 22 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐶 ‘ ( 𝑁 + 1 ) ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |
| 24 | 13 23 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐺 ‘ ( 𝑁 + 1 ) ) = ( ( 𝐺 ‘ 𝑁 ) 𝐷 ( 𝐹 ‘ ( 𝑁 + 1 ) ) ) ) |