This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . Initial value of the interval sequence. (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | ||
| ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | ||
| Assertion | ruclem4 | ⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 〈 0 , 1 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruc.4 | ⊢ 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) | |
| 4 | ruc.5 | ⊢ 𝐺 = seq 0 ( 𝐷 , 𝐶 ) | |
| 5 | 4 | fveq1i | ⊢ ( 𝐺 ‘ 0 ) = ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | ffn | ⊢ ( 𝐹 : ℕ ⟶ ℝ → 𝐹 Fn ℕ ) | |
| 8 | fnresdm | ⊢ ( 𝐹 Fn ℕ → ( 𝐹 ↾ ℕ ) = 𝐹 ) | |
| 9 | 1 7 8 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ ℕ ) = 𝐹 ) |
| 10 | dfn2 | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) | |
| 11 | 10 | reseq2i | ⊢ ( 𝐹 ↾ ℕ ) = ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) |
| 12 | 9 11 | eqtr3di | ⊢ ( 𝜑 → 𝐹 = ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) |
| 13 | 12 | uneq2d | ⊢ ( 𝜑 → ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ 𝐹 ) = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 14 | 3 13 | eqtrid | ⊢ ( 𝜑 → 𝐶 = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) = ( ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) ‘ 0 ) ) |
| 16 | c0ex | ⊢ 0 ∈ V | |
| 17 | 16 | a1i | ⊢ ( ⊤ → 0 ∈ V ) |
| 18 | opex | ⊢ 〈 0 , 1 〉 ∈ V | |
| 19 | 18 | a1i | ⊢ ( ⊤ → 〈 0 , 1 〉 ∈ V ) |
| 20 | eqid | ⊢ ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) = ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) | |
| 21 | 17 19 20 | fvsnun1 | ⊢ ( ⊤ → ( ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) ‘ 0 ) = 〈 0 , 1 〉 ) |
| 22 | 21 | mptru | ⊢ ( ( { 〈 0 , 〈 0 , 1 〉 〉 } ∪ ( 𝐹 ↾ ( ℕ0 ∖ { 0 } ) ) ) ‘ 0 ) = 〈 0 , 1 〉 |
| 23 | 15 22 | eqtrdi | ⊢ ( 𝜑 → ( 𝐶 ‘ 0 ) = 〈 0 , 1 〉 ) |
| 24 | 6 23 | seq1i | ⊢ ( 𝜑 → ( seq 0 ( 𝐷 , 𝐶 ) ‘ 0 ) = 〈 0 , 1 〉 ) |
| 25 | 5 24 | eqtrid | ⊢ ( 𝜑 → ( 𝐺 ‘ 0 ) = 〈 0 , 1 〉 ) |