This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcl2.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) | |
| seqcl2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) | ||
| seqf2.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| seqf2.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| seqf2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) | ||
| Assertion | seqf2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl2.1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) | |
| 2 | seqcl2.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) | |
| 3 | seqf2.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | seqf2.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | seqf2.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) | |
| 6 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 7 | 4 6 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑀 ) ∈ 𝐶 ) |
| 9 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐶 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 11 | elfzuz | ⊢ ( 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) → 𝑥 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) | |
| 12 | 11 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑘 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐷 ) |
| 14 | 8 9 10 13 | seqcl2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) |
| 16 | ffnfv | ⊢ ( seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ↔ ( seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑘 ) ∈ 𝐶 ) ) | |
| 17 | 7 15 16 | sylanbrc | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ) |
| 18 | 3 | feq2i | ⊢ ( seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝐶 ↔ seq 𝑀 ( + , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ 𝐶 ) |
| 19 | 17 18 | sylibr | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ 𝐶 ) |