This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc (the reals are uncountable). Substitutions for the function D . (Contributed by Mario Carneiro, 28-May-2014) (Revised by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| Assertion | ruclem1 | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 6 | ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 7 | ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 8 | 2 | oveqd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) ) |
| 9 | 3 4 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
| 10 | simpr | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 𝑦 = 𝑀 ) | |
| 11 | 10 | breq2d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 𝑚 < 𝑦 ↔ 𝑚 < 𝑀 ) ) |
| 12 | simpl | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 𝑥 = 〈 𝐴 , 𝐵 〉 ) | |
| 13 | 12 | fveq2d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 14 | 13 | opeq1d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 = 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 ) |
| 15 | 12 | fveq2d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( 𝑚 + ( 2nd ‘ 𝑥 ) ) = ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 17 | 16 | oveq1d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) = ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
| 18 | 17 15 | opeq12d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
| 19 | 11 14 18 | ifbieq12d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 20 | 19 | csbeq2dv | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 21 | 13 15 | oveq12d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) = ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) = ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
| 23 | 22 | csbeq1d | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 24 | 20 23 | eqtrd | ⊢ ( ( 𝑥 = 〈 𝐴 , 𝐵 〉 ∧ 𝑦 = 𝑀 ) → ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) | |
| 26 | opex | ⊢ 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 ∈ V | |
| 27 | opex | ⊢ 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ∈ V | |
| 28 | 26 27 | ifex | ⊢ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ∈ V |
| 29 | 28 | csbex | ⊢ ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ∈ V |
| 30 | 24 25 29 | ovmpoa | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( ℝ × ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 31 | 9 5 30 | syl2anc | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 32 | 8 31 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 33 | op1stg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) | |
| 34 | 3 4 33 | syl2anc | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐴 ) |
| 35 | op2ndg | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) | |
| 36 | 3 4 35 | syl2anc | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) = 𝐵 ) |
| 37 | 34 36 | oveq12d | ⊢ ( 𝜑 → ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( 𝐴 + 𝐵 ) ) |
| 38 | 37 | oveq1d | ⊢ ( 𝜑 → ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 39 | 38 | csbeq1d | ⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 40 | ovex | ⊢ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V | |
| 41 | breq1 | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 < 𝑀 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) | |
| 42 | opeq2 | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 = 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) | |
| 43 | oveq1 | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) ) | |
| 44 | 43 | oveq1d | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) ) |
| 45 | 44 | opeq1d | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 = 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
| 46 | 41 42 45 | ifbieq12d | ⊢ ( 𝑚 = ( ( 𝐴 + 𝐵 ) / 2 ) → if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) ) |
| 47 | 40 46 | csbie | ⊢ ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) |
| 48 | 34 | opeq1d | ⊢ ( 𝜑 → 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 = 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) |
| 49 | 36 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) = ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ) |
| 50 | 49 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 51 | 50 36 | opeq12d | ⊢ ( 𝜑 → 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 = 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) |
| 52 | 48 51 | ifeq12d | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
| 53 | 47 52 | eqtrid | ⊢ ( 𝜑 → ⦋ ( ( 𝐴 + 𝐵 ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
| 54 | 39 53 | eqtrd | ⊢ ( 𝜑 → ⦋ ( ( ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑀 , 〈 ( 1st ‘ 〈 𝐴 , 𝐵 〉 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) ) / 2 ) , ( 2nd ‘ 〈 𝐴 , 𝐵 〉 ) 〉 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
| 55 | 32 54 | eqtrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) |
| 56 | 3 4 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 57 | 56 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 58 | 3 57 | opelxpd | ⊢ ( 𝜑 → 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ∈ ( ℝ × ℝ ) ) |
| 59 | 57 4 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ ) |
| 60 | 59 | rehalfcld | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) |
| 61 | 60 4 | opelxpd | ⊢ ( 𝜑 → 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ∈ ( ℝ × ℝ ) ) |
| 62 | 58 61 | ifcld | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ∈ ( ℝ × ℝ ) ) |
| 63 | 55 62 | eqeltrd | ⊢ ( 𝜑 → ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ) |
| 64 | 55 | fveq2d | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) ) |
| 65 | fvif | ⊢ ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) | |
| 66 | op1stg | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = 𝐴 ) | |
| 67 | 3 40 66 | sylancl | ⊢ ( 𝜑 → ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = 𝐴 ) |
| 68 | ovex | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V | |
| 69 | op1stg | ⊢ ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) | |
| 70 | 68 4 69 | sylancr | ⊢ ( 𝜑 → ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 71 | 67 70 | ifeq12d | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 1st ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 1st ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 72 | 65 71 | eqtrid | ⊢ ( 𝜑 → ( 1st ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 73 | 64 72 | eqtrd | ⊢ ( 𝜑 → ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 74 | 6 73 | eqtrid | ⊢ ( 𝜑 → 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 75 | 55 | fveq2d | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) ) |
| 76 | fvif | ⊢ ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) | |
| 77 | op2ndg | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ V ) → ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) | |
| 78 | 3 40 77 | sylancl | ⊢ ( 𝜑 → ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 79 | op2ndg | ⊢ ( ( ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ V ∧ 𝐵 ∈ ℝ ) → ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = 𝐵 ) | |
| 80 | 68 4 79 | sylancr | ⊢ ( 𝜑 → ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) = 𝐵 ) |
| 81 | 78 80 | ifeq12d | ⊢ ( 𝜑 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( 2nd ‘ 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 ) , ( 2nd ‘ 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 82 | 76 81 | eqtrid | ⊢ ( 𝜑 → ( 2nd ‘ if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 〈 𝐴 , ( ( 𝐴 + 𝐵 ) / 2 ) 〉 , 〈 ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) , 𝐵 〉 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 83 | 75 82 | eqtrd | ⊢ ( 𝜑 → ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 84 | 7 83 | eqtrid | ⊢ ( 𝜑 → 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 85 | 63 74 84 | 3jca | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |