This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for addition over the reals. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | readdcan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltadd2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) | |
| 2 | 1 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐴 < 𝐵 ↔ ¬ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ) ) |
| 3 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 5 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) | |
| 6 | 3 4 5 | ltadd2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 < 𝐴 ↔ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) |
| 7 | 6 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ 𝐵 < 𝐴 ↔ ¬ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) |
| 8 | 2 7 | anbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ↔ ( ¬ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ∧ ¬ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) ) |
| 9 | 4 3 | lttri3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 = 𝐵 ↔ ( ¬ 𝐴 < 𝐵 ∧ ¬ 𝐵 < 𝐴 ) ) ) |
| 10 | 5 4 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐴 ) ∈ ℝ ) |
| 11 | 5 3 | readdcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 12 | 10 11 | lttri3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ↔ ( ¬ ( 𝐶 + 𝐴 ) < ( 𝐶 + 𝐵 ) ∧ ¬ ( 𝐶 + 𝐵 ) < ( 𝐶 + 𝐴 ) ) ) ) |
| 13 | 8 9 12 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐶 + 𝐴 ) = ( 𝐶 + 𝐵 ) ↔ 𝐴 = 𝐵 ) ) |