This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| Assertion | rpnnen2lem8 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpnnen2.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) | |
| 2 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 3 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | simpr | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 5 | eqidd | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) | |
| 6 | 1 | rpnnen2lem2 | ⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 9 | 8 | recnd | ⊢ ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℂ ) |
| 10 | 1nn | ⊢ 1 ∈ ℕ | |
| 11 | 1 | rpnnen2lem5 | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 1 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 12 | 10 11 | mpan2 | ⊢ ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 1 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 14 | 2 3 4 5 9 13 | isumsplit | ⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ℕ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( Σ 𝑘 ∈ ( 1 ... ( 𝑀 − 1 ) ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) ) |