This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcsect.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringcinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| Assertion | ringcinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcsect.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | ringcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ringcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ringcinv.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 7 | 1 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 9 | eqid | ⊢ ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 ) | |
| 10 | 2 6 8 4 5 9 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 12 | 1 2 3 4 5 11 9 | ringcsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
| 13 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) | |
| 14 | 12 13 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 16 | 1 2 3 5 4 15 9 | ringcsect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
| 17 | 3ancoma | ⊢ ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) | |
| 18 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) | |
| 19 | 17 18 | bitri | ⊢ ( ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
| 20 | 16 19 | bitrdi | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
| 21 | 14 20 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) ) |
| 22 | anandi | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( 𝜑 → ( ( 𝐹 ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) 𝐹 ) ↔ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) ) |
| 24 | simplrl | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
| 26 | 11 15 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 27 | 15 11 | rhmf | ⊢ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) |
| 28 | 26 27 | anim12i | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ) |
| 29 | 28 | ad2antlr | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ) |
| 30 | simpr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) | |
| 31 | 30 | adantl | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
| 32 | simpr | ⊢ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) | |
| 33 | 32 | ad2antrl | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 34 | 29 31 33 | jca32 | ⊢ ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) ) |
| 36 | fcof1o | ⊢ ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ ◡ 𝐹 = 𝐺 ) ) | |
| 37 | eqcom | ⊢ ( ◡ 𝐹 = 𝐺 ↔ 𝐺 = ◡ 𝐹 ) | |
| 38 | 37 | anbi2i | ⊢ ( ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ ◡ 𝐹 = 𝐺 ) ↔ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
| 39 | 36 38 | sylib | ⊢ ( ( ( 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ∧ 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
| 40 | 35 39 | syl | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
| 41 | anass | ⊢ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) | |
| 42 | 25 40 41 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) |
| 43 | 11 15 | isrim | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) |
| 44 | 43 | a1i | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ) ) |
| 45 | 44 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
| 47 | 42 46 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) → ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) |
| 48 | rimrhm | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) | |
| 49 | 48 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) |
| 50 | isrim0 | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) | |
| 51 | 50 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) |
| 52 | eleq1 | ⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) | |
| 53 | 51 52 | syl5ibrcom | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( 𝐺 = ◡ 𝐹 → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) |
| 55 | 54 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) |
| 56 | coeq1 | ⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) | |
| 57 | 56 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ 𝐹 ) ) |
| 58 | 11 15 | rimf1o | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
| 59 | 58 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) ) |
| 60 | f1ococnv1 | ⊢ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ◡ 𝐹 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 62 | 57 61 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) |
| 63 | 49 55 62 | jca31 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ) |
| 64 | 50 | biimpi | ⊢ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 65 | 64 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 66 | 52 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ↔ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 67 | 66 | anbi2d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ ◡ 𝐹 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
| 68 | 65 67 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 69 | coeq2 | ⊢ ( 𝐺 = ◡ 𝐹 → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) | |
| 70 | 69 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( 𝐹 ∘ ◡ 𝐹 ) ) |
| 71 | f1ococnv2 | ⊢ ( 𝐹 : ( Base ‘ 𝑋 ) –1-1-onto→ ( Base ‘ 𝑌 ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) | |
| 72 | 59 71 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ ◡ 𝐹 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
| 73 | 70 72 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) |
| 74 | 68 62 73 | jca31 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) |
| 75 | 63 68 74 | jca31 | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) → ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ) |
| 76 | 47 75 | impbida | ⊢ ( 𝜑 → ( ( ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ∧ ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ ( Base ‘ 𝑋 ) ) ) ∧ ( 𝐹 ∘ 𝐺 ) = ( I ↾ ( Base ‘ 𝑌 ) ) ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |
| 77 | 10 23 76 | 3bitrd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingIso 𝑌 ) ∧ 𝐺 = ◡ 𝐹 ) ) ) |