This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 12-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | isrim | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | isrim0 | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) | |
| 4 | 1 2 | rhmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| 5 | 4 | bicomd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 6 | 5 | pm5.32i | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 7 | 3 6 | bitri | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |