This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | rimf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rhmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | 1 2 | isrim | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |