This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A section in the category of unital rings, written out. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcsect.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| ringcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| ringcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| ringcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ringcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| ringcsect.e | ⊢ 𝐸 = ( Base ‘ 𝑋 ) | ||
| ringcsect.n | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| Assertion | ringcsect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcsect.c | ⊢ 𝐶 = ( RingCat ‘ 𝑈 ) | |
| 2 | ringcsect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | ringcsect.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 4 | ringcsect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | ringcsect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | ringcsect.e | ⊢ 𝐸 = ( Base ‘ 𝑋 ) | |
| 7 | ringcsect.n | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | 1 | ringccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 12 | 3 11 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 | 2 8 9 10 7 12 4 5 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 14 | 1 2 3 8 4 5 | ringchom | ⊢ ( 𝜑 → ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) = ( 𝑋 RingHom 𝑌 ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ↔ 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ) ) |
| 16 | 1 2 3 8 5 4 | ringchom | ⊢ ( 𝜑 → ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) = ( 𝑌 RingHom 𝑋 ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ↔ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) ) |
| 19 | 18 | anbi1d | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 20 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝑈 ∈ 𝑉 ) |
| 21 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 22 | 1 2 3 | ringcbas | ⊢ ( 𝜑 → 𝐵 = ( 𝑈 ∩ Ring ) ) |
| 23 | 22 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 24 | inss1 | ⊢ ( 𝑈 ∩ Ring ) ⊆ 𝑈 | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ( 𝑈 ∩ Ring ) ⊆ 𝑈 ) |
| 26 | 25 | sseld | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝑈 ∩ Ring ) → 𝑋 ∈ 𝑈 ) ) |
| 27 | 23 26 | sylbid | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈 ) ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → ( 𝑋 ∈ 𝐵 → 𝑋 ∈ 𝑈 ) ) |
| 29 | 21 28 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝑋 ∈ 𝑈 ) |
| 30 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝑌 ∈ 𝐵 ) |
| 31 | 22 | eleq2d | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 ↔ 𝑌 ∈ ( 𝑈 ∩ Ring ) ) ) |
| 32 | 25 | sseld | ⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝑈 ∩ Ring ) → 𝑌 ∈ 𝑈 ) ) |
| 33 | 31 32 | sylbid | ⊢ ( 𝜑 → ( 𝑌 ∈ 𝐵 → 𝑌 ∈ 𝑈 ) ) |
| 34 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → ( 𝑌 ∈ 𝐵 → 𝑌 ∈ 𝑈 ) ) |
| 35 | 30 34 | mpd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝑌 ∈ 𝑈 ) |
| 36 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 37 | eqid | ⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) | |
| 38 | 36 37 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 40 | 39 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝐹 : ( Base ‘ 𝑋 ) ⟶ ( Base ‘ 𝑌 ) ) |
| 41 | 37 36 | rhmf | ⊢ ( 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) |
| 43 | 42 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → 𝐺 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑋 ) ) |
| 44 | 1 20 9 29 35 29 40 43 | ringcco | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( 𝐺 ∘ 𝐹 ) ) |
| 45 | 1 2 10 3 4 6 | ringcid | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝐸 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) = ( I ↾ 𝐸 ) ) |
| 47 | 44 46 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ) → ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ↔ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) |
| 48 | 47 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) ) |
| 49 | 19 48 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) ) |
| 50 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) | |
| 51 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) | |
| 52 | 49 50 51 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) ) |
| 53 | 13 52 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 RingHom 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 RingHom 𝑋 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐸 ) ) ) ) |