This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 . (Contributed by AV, 22-Oct-2019) Remove sethood antecedent. (Revised by SN, 10-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isrim0 | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rimrcl | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) | |
| 2 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 3 | 2 | elexd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ V ) |
| 4 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 5 | 4 | elexd | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ V ) |
| 6 | 3 5 | jca | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) → ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ) |
| 8 | df-rim | ⊢ RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } ) | |
| 9 | 8 | a1i | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → RingIso = ( 𝑟 ∈ V , 𝑠 ∈ V ↦ { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } ) ) |
| 10 | oveq12 | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑅 RingHom 𝑆 ) ) | |
| 11 | 10 | adantl | ⊢ ( ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑟 RingHom 𝑠 ) = ( 𝑅 RingHom 𝑆 ) ) |
| 12 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑟 = 𝑅 ) → ( 𝑠 RingHom 𝑟 ) = ( 𝑆 RingHom 𝑅 ) ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) → ( 𝑠 RingHom 𝑟 ) = ( 𝑆 RingHom 𝑅 ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( 𝑠 RingHom 𝑟 ) = ( 𝑆 RingHom 𝑅 ) ) |
| 15 | 14 | eleq2d | ⊢ ( ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → ( ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) ↔ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| 16 | 11 15 | rabeqbidv | ⊢ ( ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) ∧ ( 𝑟 = 𝑅 ∧ 𝑠 = 𝑆 ) ) → { 𝑓 ∈ ( 𝑟 RingHom 𝑠 ) ∣ ◡ 𝑓 ∈ ( 𝑠 RingHom 𝑟 ) } = { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ) |
| 17 | simpl | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → 𝑅 ∈ V ) | |
| 18 | simpr | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → 𝑆 ∈ V ) | |
| 19 | ovex | ⊢ ( 𝑅 RingHom 𝑆 ) ∈ V | |
| 20 | 19 | rabex | ⊢ { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ∈ V |
| 21 | 20 | a1i | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ∈ V ) |
| 22 | 9 16 17 18 21 | ovmpod | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝑅 RingIso 𝑆 ) = { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ) |
| 23 | 22 | eleq2d | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ) ) |
| 24 | cnveq | ⊢ ( 𝑓 = 𝐹 → ◡ 𝑓 = ◡ 𝐹 ) | |
| 25 | 24 | eleq1d | ⊢ ( 𝑓 = 𝐹 → ( ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) ↔ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| 26 | 25 | elrab | ⊢ ( 𝐹 ∈ { 𝑓 ∈ ( 𝑅 RingHom 𝑆 ) ∣ ◡ 𝑓 ∈ ( 𝑆 RingHom 𝑅 ) } ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |
| 27 | 23 26 | bitrdi | ⊢ ( ( 𝑅 ∈ V ∧ 𝑆 ∈ V ) → ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) ) |
| 28 | 1 7 27 | pm5.21nii | ⊢ ( 𝐹 ∈ ( 𝑅 RingIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RingHom 𝑅 ) ) ) |