This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inverse in the category of unital rings is the converse operation. (Contributed by AV, 14-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringcsect.c | |- C = ( RingCat ` U ) |
|
| ringcsect.b | |- B = ( Base ` C ) |
||
| ringcsect.u | |- ( ph -> U e. V ) |
||
| ringcsect.x | |- ( ph -> X e. B ) |
||
| ringcsect.y | |- ( ph -> Y e. B ) |
||
| ringcinv.n | |- N = ( Inv ` C ) |
||
| Assertion | ringcinv | |- ( ph -> ( F ( X N Y ) G <-> ( F e. ( X RingIso Y ) /\ G = `' F ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcsect.c | |- C = ( RingCat ` U ) |
|
| 2 | ringcsect.b | |- B = ( Base ` C ) |
|
| 3 | ringcsect.u | |- ( ph -> U e. V ) |
|
| 4 | ringcsect.x | |- ( ph -> X e. B ) |
|
| 5 | ringcsect.y | |- ( ph -> Y e. B ) |
|
| 6 | ringcinv.n | |- N = ( Inv ` C ) |
|
| 7 | 1 | ringccat | |- ( U e. V -> C e. Cat ) |
| 8 | 3 7 | syl | |- ( ph -> C e. Cat ) |
| 9 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 10 | 2 6 8 4 5 9 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) ) ) |
| 11 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 12 | 1 2 3 4 5 11 9 | ringcsect | |- ( ph -> ( F ( X ( Sect ` C ) Y ) G <-> ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) |
| 13 | df-3an | |- ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) <-> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) |
|
| 14 | 12 13 | bitrdi | |- ( ph -> ( F ( X ( Sect ` C ) Y ) G <-> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) |
| 15 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 16 | 1 2 3 5 4 15 9 | ringcsect | |- ( ph -> ( G ( Y ( Sect ` C ) X ) F <-> ( G e. ( Y RingHom X ) /\ F e. ( X RingHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) |
| 17 | 3ancoma | |- ( ( G e. ( Y RingHom X ) /\ F e. ( X RingHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) |
|
| 18 | df-3an | |- ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) |
|
| 19 | 17 18 | bitri | |- ( ( G e. ( Y RingHom X ) /\ F e. ( X RingHom Y ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) <-> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) |
| 20 | 16 19 | bitrdi | |- ( ph -> ( G ( Y ( Sect ` C ) X ) F <-> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) |
| 21 | 14 20 | anbi12d | |- ( ph -> ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) ) |
| 22 | anandi | |- ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) <-> ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) |
|
| 23 | 21 22 | bitrdi | |- ( ph -> ( ( F ( X ( Sect ` C ) Y ) G /\ G ( Y ( Sect ` C ) X ) F ) <-> ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) ) |
| 24 | simplrl | |- ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> F e. ( X RingHom Y ) ) |
|
| 25 | 24 | adantl | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> F e. ( X RingHom Y ) ) |
| 26 | 11 15 | rhmf | |- ( F e. ( X RingHom Y ) -> F : ( Base ` X ) --> ( Base ` Y ) ) |
| 27 | 15 11 | rhmf | |- ( G e. ( Y RingHom X ) -> G : ( Base ` Y ) --> ( Base ` X ) ) |
| 28 | 26 27 | anim12i | |- ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) -> ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) ) |
| 29 | 28 | ad2antlr | |- ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) ) |
| 30 | simpr | |- ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) |
|
| 31 | 30 | adantl | |- ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) |
| 32 | simpr | |- ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) |
|
| 33 | 32 | ad2antrl | |- ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) |
| 34 | 29 31 33 | jca32 | |- ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) -> ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) |
| 35 | 34 | adantl | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) ) |
| 36 | fcof1o | |- ( ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ `' F = G ) ) |
|
| 37 | eqcom | |- ( `' F = G <-> G = `' F ) |
|
| 38 | 37 | anbi2i | |- ( ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ `' F = G ) <-> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) |
| 39 | 36 38 | sylib | |- ( ( ( F : ( Base ` X ) --> ( Base ` Y ) /\ G : ( Base ` Y ) --> ( Base ` X ) ) /\ ( ( F o. G ) = ( _I |` ( Base ` Y ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) |
| 40 | 35 39 | syl | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) |
| 41 | anass | |- ( ( ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) <-> ( F e. ( X RingHom Y ) /\ ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) /\ G = `' F ) ) ) |
|
| 42 | 25 40 41 | sylanbrc | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) |
| 43 | 11 15 | isrim | |- ( F e. ( X RingIso Y ) <-> ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) |
| 44 | 43 | a1i | |- ( ph -> ( F e. ( X RingIso Y ) <-> ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) ) ) |
| 45 | 44 | anbi1d | |- ( ph -> ( ( F e. ( X RingIso Y ) /\ G = `' F ) <-> ( ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) ) |
| 46 | 45 | adantr | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( ( F e. ( X RingIso Y ) /\ G = `' F ) <-> ( ( F e. ( X RingHom Y ) /\ F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) /\ G = `' F ) ) ) |
| 47 | 42 46 | mpbird | |- ( ( ph /\ ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) -> ( F e. ( X RingIso Y ) /\ G = `' F ) ) |
| 48 | rimrhm | |- ( F e. ( X RingIso Y ) -> F e. ( X RingHom Y ) ) |
|
| 49 | 48 | ad2antrl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> F e. ( X RingHom Y ) ) |
| 50 | isrim0 | |- ( F e. ( X RingIso Y ) <-> ( F e. ( X RingHom Y ) /\ `' F e. ( Y RingHom X ) ) ) |
|
| 51 | 50 | simprbi | |- ( F e. ( X RingIso Y ) -> `' F e. ( Y RingHom X ) ) |
| 52 | eleq1 | |- ( G = `' F -> ( G e. ( Y RingHom X ) <-> `' F e. ( Y RingHom X ) ) ) |
|
| 53 | 51 52 | syl5ibrcom | |- ( F e. ( X RingIso Y ) -> ( G = `' F -> G e. ( Y RingHom X ) ) ) |
| 54 | 53 | imp | |- ( ( F e. ( X RingIso Y ) /\ G = `' F ) -> G e. ( Y RingHom X ) ) |
| 55 | 54 | adantl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> G e. ( Y RingHom X ) ) |
| 56 | coeq1 | |- ( G = `' F -> ( G o. F ) = ( `' F o. F ) ) |
|
| 57 | 56 | ad2antll | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( G o. F ) = ( `' F o. F ) ) |
| 58 | 11 15 | rimf1o | |- ( F e. ( X RingIso Y ) -> F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) |
| 59 | 58 | ad2antrl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) ) |
| 60 | f1ococnv1 | |- ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) -> ( `' F o. F ) = ( _I |` ( Base ` X ) ) ) |
|
| 61 | 59 60 | syl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( `' F o. F ) = ( _I |` ( Base ` X ) ) ) |
| 62 | 57 61 | eqtrd | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( G o. F ) = ( _I |` ( Base ` X ) ) ) |
| 63 | 49 55 62 | jca31 | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) ) |
| 64 | 50 | biimpi | |- ( F e. ( X RingIso Y ) -> ( F e. ( X RingHom Y ) /\ `' F e. ( Y RingHom X ) ) ) |
| 65 | 64 | ad2antrl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( F e. ( X RingHom Y ) /\ `' F e. ( Y RingHom X ) ) ) |
| 66 | 52 | ad2antll | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( G e. ( Y RingHom X ) <-> `' F e. ( Y RingHom X ) ) ) |
| 67 | 66 | anbi2d | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) <-> ( F e. ( X RingHom Y ) /\ `' F e. ( Y RingHom X ) ) ) ) |
| 68 | 65 67 | mpbird | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) |
| 69 | coeq2 | |- ( G = `' F -> ( F o. G ) = ( F o. `' F ) ) |
|
| 70 | 69 | ad2antll | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( F o. G ) = ( F o. `' F ) ) |
| 71 | f1ococnv2 | |- ( F : ( Base ` X ) -1-1-onto-> ( Base ` Y ) -> ( F o. `' F ) = ( _I |` ( Base ` Y ) ) ) |
|
| 72 | 59 71 | syl | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( F o. `' F ) = ( _I |` ( Base ` Y ) ) ) |
| 73 | 70 72 | eqtrd | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( F o. G ) = ( _I |` ( Base ` Y ) ) ) |
| 74 | 68 62 73 | jca31 | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) |
| 75 | 63 68 74 | jca31 | |- ( ( ph /\ ( F e. ( X RingIso Y ) /\ G = `' F ) ) -> ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) ) |
| 76 | 47 75 | impbida | |- ( ph -> ( ( ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) ) /\ ( ( ( F e. ( X RingHom Y ) /\ G e. ( Y RingHom X ) ) /\ ( G o. F ) = ( _I |` ( Base ` X ) ) ) /\ ( F o. G ) = ( _I |` ( Base ` Y ) ) ) ) <-> ( F e. ( X RingIso Y ) /\ G = `' F ) ) ) |
| 77 | 10 23 76 | 3bitrd | |- ( ph -> ( F ( X N Y ) G <-> ( F e. ( X RingIso Y ) /\ G = `' F ) ) ) |