This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by AV, 15-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fcof1o | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | simplr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) | |
| 3 | simprr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) | |
| 4 | simprl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) | |
| 5 | 1 2 3 4 | fcof1od | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → 𝐹 : 𝐴 –1-1-onto→ 𝐵 ) |
| 6 | 1 2 3 4 | 2fcoidinvd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ◡ 𝐹 = 𝐺 ) |
| 7 | 5 6 | jca | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 : 𝐵 ⟶ 𝐴 ) ∧ ( ( 𝐹 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ∧ ( 𝐺 ∘ 𝐹 ) = ( I ↾ 𝐴 ) ) ) → ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ◡ 𝐹 = 𝐺 ) ) |