This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous linear functional can be expressed as an inner product. Uniqueness part of Theorem 3.9 of Beran p. 104. See riesz2 for the bounded linear functional version. (Contributed by NM, 16-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | riesz4 | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝑣 ) = ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑣 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 3 | 2 | ralbidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∀ 𝑣 ∈ ℋ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 4 | 3 | reubidv | ⊢ ( 𝑇 = if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ↔ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) ) |
| 5 | inss1 | ⊢ ( LinFn ∩ ContFn ) ⊆ LinFn | |
| 6 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 7 | 0cnfn | ⊢ ( ℋ × { 0 } ) ∈ ContFn | |
| 8 | elin | ⊢ ( ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) ↔ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( ℋ × { 0 } ) ∈ ContFn ) ) | |
| 9 | 6 7 8 | mpbir2an | ⊢ ( ℋ × { 0 } ) ∈ ( LinFn ∩ ContFn ) |
| 10 | 9 | elimel | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ( LinFn ∩ ContFn ) |
| 11 | 5 10 | sselii | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn |
| 12 | inss2 | ⊢ ( LinFn ∩ ContFn ) ⊆ ContFn | |
| 13 | 12 10 | sselii | ⊢ if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ ContFn |
| 14 | 11 13 | riesz4i | ⊢ ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( if ( 𝑇 ∈ ( LinFn ∩ ContFn ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) |
| 15 | 4 14 | dedth | ⊢ ( 𝑇 ∈ ( LinFn ∩ ContFn ) → ∃! 𝑤 ∈ ℋ ∀ 𝑣 ∈ ℋ ( 𝑇 ‘ 𝑣 ) = ( 𝑣 ·ih 𝑤 ) ) |