This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the difference between two vectors is zero, they are equal. (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubeq0 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ) ) |
| 3 | eqeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 = 𝐵 ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ) | |
| 4 | 2 3 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | eqeq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ) ) |
| 7 | eqeq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 8 | 6 7 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = 𝐵 ) ↔ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 9 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 10 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 11 | 9 10 | hvsubeq0i | ⊢ ( ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) = 0ℎ ↔ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) |
| 12 | 4 8 11 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) = 0ℎ ↔ 𝐴 = 𝐵 ) ) |