This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| rhmpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | ||
| rhmpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| rhmpsr.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) | ||
| rhmpsr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| rhmpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| Assertion | rhmpsr | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | rhmpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | |
| 3 | rhmpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | rhmpsr.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) | |
| 5 | rhmpsr.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 6 | rhmpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 8 | eqid | ⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) | |
| 9 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 10 | eqid | ⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) | |
| 11 | rhmrcl1 | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 13 | 1 5 12 | psrring | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 14 | rhmrcl2 | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 16 | 2 5 15 | psrring | ⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
| 17 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 18 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 19 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 20 | 1 5 12 17 18 19 7 | psr1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 21 | 20 | coeq2d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 23 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 24 | 22 23 | rhmf | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 25 | 6 24 | syl | ⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 26 | 22 19 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 27 | 12 26 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 | 22 18 | ring0cl | ⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 12 28 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 27 29 | ifcld | ⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 32 | 25 31 | cofmpt | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 33 | fvif | ⊢ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) | |
| 34 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 35 | 19 34 | rhm1 | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 36 | 6 35 | syl | ⊢ ( 𝜑 → ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 37 | rhmghm | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 38 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 39 | 18 38 | ghmid | ⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 40 | 6 37 39 | 3syl | ⊢ ( 𝜑 → ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑆 ) ) |
| 41 | 36 40 | ifeq12d | ⊢ ( 𝜑 → if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 𝐻 ‘ ( 1r ‘ 𝑅 ) ) , ( 𝐻 ‘ ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 42 | 33 41 | eqtrid | ⊢ ( 𝜑 → ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) = if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) |
| 43 | 42 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 44 | 21 32 43 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 45 | coeq2 | ⊢ ( 𝑝 = ( 1r ‘ 𝑃 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) | |
| 46 | 3 7 | ringidcl | ⊢ ( 𝑃 ∈ Ring → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 47 | 13 46 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) ∈ 𝐵 ) |
| 48 | 6 47 | coexd | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ∈ V ) |
| 49 | 4 45 47 48 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 𝐻 ∘ ( 1r ‘ 𝑃 ) ) ) |
| 50 | 2 5 15 17 38 34 8 | psr1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑑 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑆 ) , ( 0g ‘ 𝑆 ) ) ) ) |
| 51 | 44 49 50 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑄 ) ) |
| 52 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 53 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 54 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 55 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 56 | 1 2 3 52 9 10 53 54 55 | rhmcomulpsr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 57 | coeq2 | ⊢ ( 𝑝 = ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) | |
| 58 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Ring ) |
| 59 | 3 9 58 54 55 | ringcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 60 | 53 59 | coexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
| 61 | 4 57 59 60 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) ) |
| 62 | coeq2 | ⊢ ( 𝑝 = 𝑥 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑥 ) ) | |
| 63 | 53 54 | coexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑥 ) ∈ V ) |
| 64 | 4 62 54 63 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐻 ∘ 𝑥 ) ) |
| 65 | coeq2 | ⊢ ( 𝑝 = 𝑦 → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ 𝑦 ) ) | |
| 66 | 53 55 | coexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ 𝑦 ) ∈ V ) |
| 67 | 4 65 55 66 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐻 ∘ 𝑦 ) ) |
| 68 | 64 67 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 69 | 56 61 68 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( .r ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 70 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 71 | eqid | ⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) | |
| 72 | ghmmhm | ⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 73 | 6 37 72 | 3syl | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 74 | 73 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 75 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) | |
| 76 | 1 2 3 52 74 75 | mhmcopsr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝐻 ∘ 𝑝 ) ∈ ( Base ‘ 𝑄 ) ) |
| 77 | 76 4 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑄 ) ) |
| 78 | 53 37 72 | 3syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 79 | 1 2 3 52 70 71 78 54 55 | mhmcoaddpsr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 80 | coeq2 | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝐻 ∘ 𝑝 ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) | |
| 81 | 58 | ringgrpd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 82 | 3 70 81 54 55 | grpcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 83 | 53 82 | coexd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ∈ V ) |
| 84 | 4 80 82 83 | fvmptd3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝐻 ∘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) ) |
| 85 | 64 67 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐻 ∘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐻 ∘ 𝑦 ) ) ) |
| 86 | 79 84 85 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑄 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 87 | 3 7 8 9 10 13 16 51 69 52 70 71 77 86 | isrhmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |