This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the ring homomorphism in rhmpsr preserves multiplication. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmcomulpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| rhmcomulpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | ||
| rhmcomulpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| rhmcomulpsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | ||
| rhmcomulpsr.1 | ⊢ · = ( .r ‘ 𝑃 ) | ||
| rhmcomulpsr.2 | ⊢ ∙ = ( .r ‘ 𝑄 ) | ||
| rhmcomulpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| rhmcomulpsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| rhmcomulpsr.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | rhmcomulpsr | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∙ ( 𝐻 ∘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmcomulpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | rhmcomulpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | |
| 3 | rhmcomulpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | rhmcomulpsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | |
| 5 | rhmcomulpsr.1 | ⊢ · = ( .r ‘ 𝑃 ) | |
| 6 | rhmcomulpsr.2 | ⊢ ∙ = ( .r ‘ 𝑄 ) | |
| 7 | rhmcomulpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 8 | rhmcomulpsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 9 | rhmcomulpsr.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 12 | 10 11 | rhmf | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | rhmrcl1 | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 16 | 7 15 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 17 | 1 10 14 3 8 | psrelbas | ⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 18 | 1 10 14 3 9 | psrelbas | ⊢ ( 𝜑 → 𝐺 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | 14 16 17 18 | rhmpsrlem2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 | 13 19 | cofmpt | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) ) |
| 21 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 22 | 16 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑅 ∈ CMnd ) |
| 24 | rhmrcl2 | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 25 | 7 24 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 26 | 25 | ringgrpd | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 27 | 26 | grpmndd | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝑆 ∈ Mnd ) |
| 29 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 30 | 29 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 31 | 30 | rabex | ⊢ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ∈ V |
| 32 | 31 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ∈ V ) |
| 33 | rhmghm | ⊢ ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 34 | ghmmhm | ⊢ ( 𝐻 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 35 | 7 33 34 | 3syl | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 37 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 38 | 16 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 39 | elrabi | ⊢ ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } → 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 40 | 17 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐹 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝐹 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 42 | 41 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝐹 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ) |
| 43 | 18 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → 𝐺 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 44 | eqid | ⊢ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } = { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } | |
| 45 | 14 44 | psrbagconcl | ⊢ ( ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑑 ) ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) |
| 46 | 45 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑑 ) ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) |
| 47 | elrabi | ⊢ ( ( 𝑘 ∘f − 𝑑 ) ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } → ( 𝑘 ∘f − 𝑑 ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) | |
| 48 | 46 47 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑑 ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 49 | 43 48 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 50 | 10 37 38 42 49 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 51 | 14 16 17 18 | rhmpsrlem1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 52 | 10 21 23 28 32 36 50 51 | gsummptmhm | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) = ( 𝐻 ‘ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) |
| 53 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 54 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 55 | 10 37 54 | rhmmul | ⊢ ( ( 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ( 𝐹 ‘ 𝑑 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) |
| 56 | 53 42 49 55 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) |
| 57 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 58 | 39 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → 𝑑 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 59 | 57 58 | fvco3d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ) |
| 60 | 43 48 | fvco3d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) = ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) |
| 61 | 59 60 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑑 ) ) ( .r ‘ 𝑆 ) ( 𝐻 ‘ ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) |
| 62 | 56 61 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ) → ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) = ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) |
| 63 | 62 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) = ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( 𝐻 ‘ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) |
| 65 | 52 64 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) → ( 𝐻 ‘ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) = ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) |
| 66 | 65 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝐻 ‘ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) |
| 67 | 20 66 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) |
| 68 | 1 3 37 5 14 8 9 | psrmulfval | ⊢ ( 𝜑 → ( 𝐹 · 𝐺 ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) |
| 69 | 68 | coeq2d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 · 𝐺 ) ) = ( 𝐻 ∘ ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑅 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( 𝐹 ‘ 𝑑 ) ( .r ‘ 𝑅 ) ( 𝐺 ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) ) |
| 70 | 1 2 3 4 35 8 | mhmcopsr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
| 71 | 1 2 3 4 35 9 | mhmcopsr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ 𝐶 ) |
| 72 | 2 4 54 6 14 70 71 | psrmulfval | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ∙ ( 𝐻 ∘ 𝐺 ) ) = ( 𝑘 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ ( 𝑆 Σg ( 𝑑 ∈ { 𝑒 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∣ 𝑒 ∘r ≤ 𝑘 } ↦ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑑 ) ( .r ‘ 𝑆 ) ( ( 𝐻 ∘ 𝐺 ) ‘ ( 𝑘 ∘f − 𝑑 ) ) ) ) ) ) ) |
| 73 | 67 69 72 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 · 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∙ ( 𝐻 ∘ 𝐺 ) ) ) |