This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Provide a ring homomorphism between two power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsr.p | |- P = ( I mPwSer R ) |
|
| rhmpsr.q | |- Q = ( I mPwSer S ) |
||
| rhmpsr.b | |- B = ( Base ` P ) |
||
| rhmpsr.f | |- F = ( p e. B |-> ( H o. p ) ) |
||
| rhmpsr.i | |- ( ph -> I e. V ) |
||
| rhmpsr.h | |- ( ph -> H e. ( R RingHom S ) ) |
||
| Assertion | rhmpsr | |- ( ph -> F e. ( P RingHom Q ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsr.p | |- P = ( I mPwSer R ) |
|
| 2 | rhmpsr.q | |- Q = ( I mPwSer S ) |
|
| 3 | rhmpsr.b | |- B = ( Base ` P ) |
|
| 4 | rhmpsr.f | |- F = ( p e. B |-> ( H o. p ) ) |
|
| 5 | rhmpsr.i | |- ( ph -> I e. V ) |
|
| 6 | rhmpsr.h | |- ( ph -> H e. ( R RingHom S ) ) |
|
| 7 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 8 | eqid | |- ( 1r ` Q ) = ( 1r ` Q ) |
|
| 9 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 10 | eqid | |- ( .r ` Q ) = ( .r ` Q ) |
|
| 11 | rhmrcl1 | |- ( H e. ( R RingHom S ) -> R e. Ring ) |
|
| 12 | 6 11 | syl | |- ( ph -> R e. Ring ) |
| 13 | 1 5 12 | psrring | |- ( ph -> P e. Ring ) |
| 14 | rhmrcl2 | |- ( H e. ( R RingHom S ) -> S e. Ring ) |
|
| 15 | 6 14 | syl | |- ( ph -> S e. Ring ) |
| 16 | 2 5 15 | psrring | |- ( ph -> Q e. Ring ) |
| 17 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 18 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 19 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 20 | 1 5 12 17 18 19 7 | psr1 | |- ( ph -> ( 1r ` P ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 21 | 20 | coeq2d | |- ( ph -> ( H o. ( 1r ` P ) ) = ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 22 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 23 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 24 | 22 23 | rhmf | |- ( H e. ( R RingHom S ) -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 25 | 6 24 | syl | |- ( ph -> H : ( Base ` R ) --> ( Base ` S ) ) |
| 26 | 22 19 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 27 | 12 26 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 28 | 22 18 | ring0cl | |- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
| 29 | 12 28 | syl | |- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
| 30 | 27 29 | ifcld | |- ( ph -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 31 | 30 | adantr | |- ( ( ph /\ d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) -> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) e. ( Base ` R ) ) |
| 32 | 25 31 | cofmpt | |- ( ph -> ( H o. ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 33 | fvif | |- ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) |
|
| 34 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 35 | 19 34 | rhm1 | |- ( H e. ( R RingHom S ) -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 36 | 6 35 | syl | |- ( ph -> ( H ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 37 | rhmghm | |- ( H e. ( R RingHom S ) -> H e. ( R GrpHom S ) ) |
|
| 38 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 39 | 18 38 | ghmid | |- ( H e. ( R GrpHom S ) -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 40 | 6 37 39 | 3syl | |- ( ph -> ( H ` ( 0g ` R ) ) = ( 0g ` S ) ) |
| 41 | 36 40 | ifeq12d | |- ( ph -> if ( d = ( I X. { 0 } ) , ( H ` ( 1r ` R ) ) , ( H ` ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) |
| 42 | 33 41 | eqtrid | |- ( ph -> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) = if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) |
| 43 | 42 | mpteq2dv | |- ( ph -> ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> ( H ` if ( d = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 44 | 21 32 43 | 3eqtrd | |- ( ph -> ( H o. ( 1r ` P ) ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 45 | coeq2 | |- ( p = ( 1r ` P ) -> ( H o. p ) = ( H o. ( 1r ` P ) ) ) |
|
| 46 | 3 7 | ringidcl | |- ( P e. Ring -> ( 1r ` P ) e. B ) |
| 47 | 13 46 | syl | |- ( ph -> ( 1r ` P ) e. B ) |
| 48 | 6 47 | coexd | |- ( ph -> ( H o. ( 1r ` P ) ) e. _V ) |
| 49 | 4 45 47 48 | fvmptd3 | |- ( ph -> ( F ` ( 1r ` P ) ) = ( H o. ( 1r ` P ) ) ) |
| 50 | 2 5 15 17 38 34 8 | psr1 | |- ( ph -> ( 1r ` Q ) = ( d e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( d = ( I X. { 0 } ) , ( 1r ` S ) , ( 0g ` S ) ) ) ) |
| 51 | 44 49 50 | 3eqtr4d | |- ( ph -> ( F ` ( 1r ` P ) ) = ( 1r ` Q ) ) |
| 52 | eqid | |- ( Base ` Q ) = ( Base ` Q ) |
|
| 53 | 6 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R RingHom S ) ) |
| 54 | simprl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 55 | simprr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 56 | 1 2 3 52 9 10 53 54 55 | rhmcomulpsr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) |
| 57 | coeq2 | |- ( p = ( x ( .r ` P ) y ) -> ( H o. p ) = ( H o. ( x ( .r ` P ) y ) ) ) |
|
| 58 | 13 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Ring ) |
| 59 | 3 9 58 54 55 | ringcld | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( .r ` P ) y ) e. B ) |
| 60 | 53 59 | coexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( .r ` P ) y ) ) e. _V ) |
| 61 | 4 57 59 60 | fvmptd3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( H o. ( x ( .r ` P ) y ) ) ) |
| 62 | coeq2 | |- ( p = x -> ( H o. p ) = ( H o. x ) ) |
|
| 63 | 53 54 | coexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. x ) e. _V ) |
| 64 | 4 62 54 63 | fvmptd3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` x ) = ( H o. x ) ) |
| 65 | coeq2 | |- ( p = y -> ( H o. p ) = ( H o. y ) ) |
|
| 66 | 53 55 | coexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. y ) e. _V ) |
| 67 | 4 65 55 66 | fvmptd3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` y ) = ( H o. y ) ) |
| 68 | 64 67 | oveq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) = ( ( H o. x ) ( .r ` Q ) ( H o. y ) ) ) |
| 69 | 56 61 68 | 3eqtr4d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( .r ` P ) y ) ) = ( ( F ` x ) ( .r ` Q ) ( F ` y ) ) ) |
| 70 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 71 | eqid | |- ( +g ` Q ) = ( +g ` Q ) |
|
| 72 | ghmmhm | |- ( H e. ( R GrpHom S ) -> H e. ( R MndHom S ) ) |
|
| 73 | 6 37 72 | 3syl | |- ( ph -> H e. ( R MndHom S ) ) |
| 74 | 73 | adantr | |- ( ( ph /\ p e. B ) -> H e. ( R MndHom S ) ) |
| 75 | simpr | |- ( ( ph /\ p e. B ) -> p e. B ) |
|
| 76 | 1 2 3 52 74 75 | mhmcopsr | |- ( ( ph /\ p e. B ) -> ( H o. p ) e. ( Base ` Q ) ) |
| 77 | 76 4 | fmptd | |- ( ph -> F : B --> ( Base ` Q ) ) |
| 78 | 53 37 72 | 3syl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> H e. ( R MndHom S ) ) |
| 79 | 1 2 3 52 70 71 78 54 55 | mhmcoaddpsr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) |
| 80 | coeq2 | |- ( p = ( x ( +g ` P ) y ) -> ( H o. p ) = ( H o. ( x ( +g ` P ) y ) ) ) |
|
| 81 | 58 | ringgrpd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Grp ) |
| 82 | 3 70 81 54 55 | grpcld | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) e. B ) |
| 83 | 53 82 | coexd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( H o. ( x ( +g ` P ) y ) ) e. _V ) |
| 84 | 4 80 82 83 | fvmptd3 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( H o. ( x ( +g ` P ) y ) ) ) |
| 85 | 64 67 | oveq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) = ( ( H o. x ) ( +g ` Q ) ( H o. y ) ) ) |
| 86 | 79 84 85 | 3eqtr4d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x ( +g ` P ) y ) ) = ( ( F ` x ) ( +g ` Q ) ( F ` y ) ) ) |
| 87 | 3 7 8 9 10 13 16 51 69 52 70 71 77 86 | isrhmd | |- ( ph -> F e. ( P RingHom Q ) ) |