This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a monoid homomorphism and a power series is a power series. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcopsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| mhmcopsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | ||
| mhmcopsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mhmcopsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | ||
| mhmcopsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | ||
| mhmcopsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| Assertion | mhmcopsr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcopsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mhmcopsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | |
| 3 | mhmcopsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mhmcopsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | |
| 5 | mhmcopsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 6 | mhmcopsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 7 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑆 ) ∈ V ) | |
| 8 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 9 | 8 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 11 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 13 | 11 12 | mhmf | ⊢ ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝐻 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
| 15 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 16 | 1 11 15 3 6 | psrelbas | ⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 14 16 | fcod | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑆 ) ) |
| 18 | 7 10 17 | elmapdd | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 19 | reldmpsr | ⊢ Rel dom mPwSer | |
| 20 | 19 1 3 | elbasov | ⊢ ( 𝐹 ∈ 𝐵 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 21 | 6 20 | syl | ⊢ ( 𝜑 → ( 𝐼 ∈ V ∧ 𝑅 ∈ V ) ) |
| 22 | 21 | simpld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 23 | 2 12 15 4 22 | psrbas | ⊢ ( 𝜑 → 𝐶 = ( ( Base ‘ 𝑆 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 24 | 18 23 | eleqtrrd | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |