This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Provide a ring homomorphism between two univariate power series algebras over their respective base rings given a ring homomorphism between the two base rings. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsr1.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| rhmpsr1.q | ⊢ 𝑄 = ( PwSer1 ‘ 𝑆 ) | ||
| rhmpsr1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| rhmpsr1.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) | ||
| rhmpsr1.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| Assertion | rhmpsr1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsr1.p | ⊢ 𝑃 = ( PwSer1 ‘ 𝑅 ) | |
| 2 | rhmpsr1.q | ⊢ 𝑄 = ( PwSer1 ‘ 𝑆 ) | |
| 3 | rhmpsr1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | rhmpsr1.f | ⊢ 𝐹 = ( 𝑝 ∈ 𝐵 ↦ ( 𝐻 ∘ 𝑝 ) ) | |
| 5 | rhmpsr1.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 6 | eqid | ⊢ ( 1o mPwSer 𝑅 ) = ( 1o mPwSer 𝑅 ) | |
| 7 | eqid | ⊢ ( 1o mPwSer 𝑆 ) = ( 1o mPwSer 𝑆 ) | |
| 8 | 1 3 6 | psr1bas2 | ⊢ 𝐵 = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 9 | 1oex | ⊢ 1o ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝜑 → 1o ∈ V ) |
| 11 | 6 7 8 4 10 5 | rhmpsr | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 1o mPwSer 𝑅 ) RingHom ( 1o mPwSer 𝑆 ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 13 | 1 12 6 | psr1bas2 | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) |
| 14 | 13 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ ( 1o mPwSer 𝑅 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) | |
| 16 | 2 15 7 | psr1bas2 | ⊢ ( Base ‘ 𝑄 ) = ( Base ‘ ( 1o mPwSer 𝑆 ) ) |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ ( 1o mPwSer 𝑆 ) ) ) |
| 18 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) ) | |
| 19 | eqidd | ⊢ ( 𝜑 → ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) ) | |
| 20 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 21 | 1 6 20 | psr1plusg | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ ( 1o mPwSer 𝑅 ) ) |
| 22 | 21 | eqcomi | ⊢ ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ 𝑃 ) |
| 23 | 22 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( +g ‘ ( 1o mPwSer 𝑅 ) ) = ( +g ‘ 𝑃 ) ) |
| 24 | 23 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( +g ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) |
| 25 | eqid | ⊢ ( +g ‘ 𝑄 ) = ( +g ‘ 𝑄 ) | |
| 26 | 2 7 25 | psr1plusg | ⊢ ( +g ‘ 𝑄 ) = ( +g ‘ ( 1o mPwSer 𝑆 ) ) |
| 27 | 26 | eqcomi | ⊢ ( +g ‘ ( 1o mPwSer 𝑆 ) ) = ( +g ‘ 𝑄 ) |
| 28 | 27 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( +g ‘ ( 1o mPwSer 𝑆 ) ) = ( +g ‘ 𝑄 ) ) |
| 29 | 28 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝑥 ( +g ‘ ( 1o mPwSer 𝑆 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑄 ) 𝑦 ) ) |
| 30 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 31 | 1 6 30 | psr1mulr | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ ( 1o mPwSer 𝑅 ) ) |
| 32 | 31 | eqcomi | ⊢ ( .r ‘ ( 1o mPwSer 𝑅 ) ) = ( .r ‘ 𝑃 ) |
| 33 | 32 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( .r ‘ ( 1o mPwSer 𝑅 ) ) = ( .r ‘ 𝑃 ) ) |
| 34 | 33 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑃 ) ∧ 𝑦 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑥 ( .r ‘ ( 1o mPwSer 𝑅 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) |
| 35 | eqid | ⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) | |
| 36 | 2 7 35 | psr1mulr | ⊢ ( .r ‘ 𝑄 ) = ( .r ‘ ( 1o mPwSer 𝑆 ) ) |
| 37 | 36 | eqcomi | ⊢ ( .r ‘ ( 1o mPwSer 𝑆 ) ) = ( .r ‘ 𝑄 ) |
| 38 | 37 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( .r ‘ ( 1o mPwSer 𝑆 ) ) = ( .r ‘ 𝑄 ) ) |
| 39 | 38 | oveqd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝑄 ) ∧ 𝑦 ∈ ( Base ‘ 𝑄 ) ) ) → ( 𝑥 ( .r ‘ ( 1o mPwSer 𝑆 ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑄 ) 𝑦 ) ) |
| 40 | 14 17 18 19 24 29 34 39 | rhmpropd | ⊢ ( 𝜑 → ( ( 1o mPwSer 𝑅 ) RingHom ( 1o mPwSer 𝑆 ) ) = ( 𝑃 RingHom 𝑄 ) ) |
| 41 | 11 40 | eleqtrd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑃 RingHom 𝑄 ) ) |