This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the ring homomorphism in rhmpsr preserves addition. (Contributed by SN, 18-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mhmcoaddpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| mhmcoaddpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | ||
| mhmcoaddpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mhmcoaddpsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | ||
| mhmcoaddpsr.1 | ⊢ + = ( +g ‘ 𝑃 ) | ||
| mhmcoaddpsr.2 | ⊢ ✚ = ( +g ‘ 𝑄 ) | ||
| mhmcoaddpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | ||
| mhmcoaddpsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | ||
| mhmcoaddpsr.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | ||
| Assertion | mhmcoaddpsr | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmcoaddpsr.p | ⊢ 𝑃 = ( 𝐼 mPwSer 𝑅 ) | |
| 2 | mhmcoaddpsr.q | ⊢ 𝑄 = ( 𝐼 mPwSer 𝑆 ) | |
| 3 | mhmcoaddpsr.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mhmcoaddpsr.c | ⊢ 𝐶 = ( Base ‘ 𝑄 ) | |
| 5 | mhmcoaddpsr.1 | ⊢ + = ( +g ‘ 𝑃 ) | |
| 6 | mhmcoaddpsr.2 | ⊢ ✚ = ( +g ‘ 𝑄 ) | |
| 7 | mhmcoaddpsr.h | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 8 | mhmcoaddpsr.f | ⊢ ( 𝜑 → 𝐹 ∈ 𝐵 ) | |
| 9 | mhmcoaddpsr.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝐵 ) | |
| 10 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) ∈ V ) | |
| 11 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 12 | 11 | rabex | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V |
| 13 | 12 | a1i | ⊢ ( 𝜑 → { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ∈ V ) |
| 14 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 15 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 16 | 1 14 15 3 8 | psrelbas | ⊢ ( 𝜑 → 𝐹 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 17 | 10 13 16 | elmapdd | ⊢ ( 𝜑 → 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 18 | 1 14 15 3 9 | psrelbas | ⊢ ( 𝜑 → 𝐺 : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝑅 ) ) |
| 19 | 10 13 18 | elmapdd | ⊢ ( 𝜑 → 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) |
| 20 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 21 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 22 | 14 20 21 | mhmvlin | ⊢ ( ( 𝐻 ∈ ( 𝑅 MndHom 𝑆 ) ∧ 𝐹 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ∧ 𝐺 ∈ ( ( Base ‘ 𝑅 ) ↑m { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) ) → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 23 | 7 17 19 22 | syl3anc | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 24 | 1 3 20 5 8 9 | psradd | ⊢ ( 𝜑 → ( 𝐹 + 𝐺 ) = ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) |
| 25 | 24 | coeq2d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( 𝐻 ∘ ( 𝐹 ∘f ( +g ‘ 𝑅 ) 𝐺 ) ) ) |
| 26 | 1 2 3 4 7 8 | mhmcopsr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ 𝐶 ) |
| 27 | 1 2 3 4 7 9 | mhmcopsr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐺 ) ∈ 𝐶 ) |
| 28 | 2 4 21 6 26 27 | psradd | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ∘f ( +g ‘ 𝑆 ) ( 𝐻 ∘ 𝐺 ) ) ) |
| 29 | 23 25 28 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐻 ∘ ( 𝐹 + 𝐺 ) ) = ( ( 𝐻 ∘ 𝐹 ) ✚ ( 𝐻 ∘ 𝐺 ) ) ) |