This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidl0cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | lidl0cl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidl0cl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 3 | rlm0 | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 4 | 2 3 | eqtri | ⊢ 0 = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 5 | rlmlmod | ⊢ ( 𝑅 ∈ Ring → ( ringLMod ‘ 𝑅 ) ∈ LMod ) | |
| 6 | simpr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ 𝑈 ) | |
| 7 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 8 | 1 7 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 | 6 8 | eleqtrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) |
| 10 | eqid | ⊢ ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) = ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 11 | eqid | ⊢ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 12 | 10 11 | lss0cl | ⊢ ( ( ( ringLMod ‘ 𝑅 ) ∈ LMod ∧ 𝐼 ∈ ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) ) → ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ∈ 𝐼 ) |
| 13 | 5 9 12 | syl2an2r | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 0g ‘ ( ringLMod ‘ 𝑅 ) ) ∈ 𝐼 ) |
| 14 | 4 13 | eqeltrid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 0 ∈ 𝐼 ) |