This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islidl.s | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| islidl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| islidl.p | ⊢ + = ( +g ‘ 𝑅 ) | ||
| islidl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | islidl | ⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islidl.s | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | islidl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | islidl.p | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | islidl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 5 | rlmsca2 | ⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 6 | baseid | ⊢ Base = Slot ( Base ‘ ndx ) | |
| 7 | 6 2 | strfvi | ⊢ 𝐵 = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 8 | rlmbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 9 | 2 8 | eqtri | ⊢ 𝐵 = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 | rlmplusg | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 11 | 3 10 | eqtri | ⊢ + = ( +g ‘ ( ringLMod ‘ 𝑅 ) ) |
| 12 | rlmvsca | ⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 13 | 4 12 | eqtri | ⊢ · = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
| 14 | lidlval | ⊢ ( LIdeal ‘ 𝑅 ) = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) | |
| 15 | 1 14 | eqtri | ⊢ 𝑈 = ( LSubSp ‘ ( ringLMod ‘ 𝑅 ) ) |
| 16 | 5 7 9 11 13 15 | islss | ⊢ ( 𝐼 ∈ 𝑈 ↔ ( 𝐼 ⊆ 𝐵 ∧ 𝐼 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑎 ∈ 𝐼 ∀ 𝑏 ∈ 𝐼 ( ( 𝑥 · 𝑎 ) + 𝑏 ) ∈ 𝐼 ) ) |