This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rhmpsr et al. (Contributed by SN, 8-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmpsrlem1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| rhmpsrlem1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| rhmpsrlem1.x | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | ||
| rhmpsrlem1.y | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | ||
| Assertion | rhmpsrlem2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmpsrlem1.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | rhmpsrlem1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 3 | rhmpsrlem1.x | ⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | |
| 4 | rhmpsrlem1.y | ⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 7 | 2 | ringcmnd | ⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 9 | 1 | psrbaglefi | ⊢ ( 𝑘 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ∈ Fin ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑅 ∈ Ring ) |
| 13 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 14 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∘r ≤ 𝑘 ↔ 𝑥 ∘r ≤ 𝑘 ) ) | |
| 15 | 14 | elrab | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↔ ( 𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘 ) ) |
| 16 | 15 | biimpi | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } → ( 𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘 ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑥 ∈ 𝐷 ∧ 𝑥 ∘r ≤ 𝑘 ) ) |
| 18 | 17 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∈ 𝐷 ) |
| 19 | 13 18 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑋 ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 20 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 21 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑘 ∈ 𝐷 ) | |
| 22 | 1 | psrbagf | ⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 23 | 18 22 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 24 | 17 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → 𝑥 ∘r ≤ 𝑘 ) |
| 25 | 1 | psrbagcon | ⊢ ( ( 𝑘 ∈ 𝐷 ∧ 𝑥 : 𝐼 ⟶ ℕ0 ∧ 𝑥 ∘r ≤ 𝑘 ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑥 ) ∘r ≤ 𝑘 ) ) |
| 26 | 21 23 24 25 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ∧ ( 𝑘 ∘f − 𝑥 ) ∘r ≤ 𝑘 ) ) |
| 27 | 26 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑘 ∘f − 𝑥 ) ∈ 𝐷 ) |
| 28 | 20 27 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 | 5 11 12 19 28 | ringcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ) → ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 30 | 29 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) : { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ⟶ ( Base ‘ 𝑅 ) ) |
| 31 | 1 2 3 4 | rhmpsrlem1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 32 | 5 6 8 10 30 31 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑥 ∈ { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝑘 } ↦ ( ( 𝑋 ‘ 𝑥 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑘 ∘f − 𝑥 ) ) ) ) ) ∈ ( Base ‘ 𝑅 ) ) |