This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Apply a group homomorphism to a group sum expressed with a mapping. (Contributed by Thierry Arnoux, 7-Sep-2018) (Revised by AV, 8-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptmhm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptmhm.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptmhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | ||
| gsummptmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsummptmhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | ||
| gsummptmhm.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | ||
| gsummptmhm.w | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) | ||
| Assertion | gsummptmhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptmhm.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptmhm.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummptmhm.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptmhm.h | ⊢ ( 𝜑 → 𝐻 ∈ Mnd ) | |
| 5 | gsummptmhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsummptmhm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) ) | |
| 7 | gsummptmhm.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) | |
| 8 | gsummptmhm.w | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) finSupp 0 ) | |
| 9 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) | |
| 10 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 11 | 1 10 | mhmf | ⊢ ( 𝐾 ∈ ( 𝐺 MndHom 𝐻 ) → 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) ) |
| 12 | ffn | ⊢ ( 𝐾 : 𝐵 ⟶ ( Base ‘ 𝐻 ) → 𝐾 Fn 𝐵 ) | |
| 13 | 6 11 12 | 3syl | ⊢ ( 𝜑 → 𝐾 Fn 𝐵 ) |
| 14 | dffn5 | ⊢ ( 𝐾 Fn 𝐵 ↔ 𝐾 = ( 𝑦 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑦 ) ) ) | |
| 15 | 13 14 | sylib | ⊢ ( 𝜑 → 𝐾 = ( 𝑦 ∈ 𝐵 ↦ ( 𝐾 ‘ 𝑦 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐾 ‘ 𝑦 ) = ( 𝐾 ‘ 𝐶 ) ) | |
| 17 | 7 9 15 16 | fmptco | ⊢ ( 𝜑 → ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) |
| 18 | 17 | oveq2d | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( 𝐻 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) ) |
| 19 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ 𝐵 ) |
| 20 | 1 2 3 4 5 6 19 8 | gsummhm | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝐾 ∘ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |
| 21 | 18 20 | eqtr3d | ⊢ ( 𝜑 → ( 𝐻 Σg ( 𝑥 ∈ 𝐴 ↦ ( 𝐾 ‘ 𝐶 ) ) ) = ( 𝐾 ‘ ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) ) ) |