This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre1.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| rfcnpre1.2 | ⊢ Ⅎ 𝑥 𝐹 | ||
| rfcnpre1.3 | ⊢ Ⅎ 𝑥 𝜑 | ||
| rfcnpre1.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 | ||
| rfcnpre1.6 | ⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } | ||
| rfcnpre1.7 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | ||
| rfcnpre1.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | ||
| Assertion | rfcnpre1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre1.1 | ⊢ Ⅎ 𝑥 𝐵 | |
| 2 | rfcnpre1.2 | ⊢ Ⅎ 𝑥 𝐹 | |
| 3 | rfcnpre1.3 | ⊢ Ⅎ 𝑥 𝜑 | |
| 4 | rfcnpre1.4 | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 5 | rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 | |
| 6 | rfcnpre1.6 | ⊢ 𝐴 = { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } | |
| 7 | rfcnpre1.7 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) | |
| 8 | rfcnpre1.8 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 9 | 2 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐹 |
| 10 | nfcv | ⊢ Ⅎ 𝑥 (,) | |
| 11 | nfcv | ⊢ Ⅎ 𝑥 +∞ | |
| 12 | 1 10 11 | nfov | ⊢ Ⅎ 𝑥 ( 𝐵 (,) +∞ ) |
| 13 | 9 12 | nfima | ⊢ Ⅎ 𝑥 ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) |
| 14 | nfrab1 | ⊢ Ⅎ 𝑥 { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } | |
| 15 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 16 | 8 15 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 17 | istopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ↔ ( 𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽 ) ) | |
| 18 | 16 5 17 | sylanblrc | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | retopon | ⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) | |
| 20 | 4 19 | eqeltri | ⊢ 𝐾 ∈ ( TopOn ‘ ℝ ) |
| 21 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℝ ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 22 | 18 20 21 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 23 | 8 22 | mpbid | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 24 | 23 | simpld | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 25 | 24 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 26 | elioopnf | ⊢ ( 𝐵 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) | |
| 27 | 7 26 | syl | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 28 | 27 | baibd | ⊢ ( ( 𝜑 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 29 | 25 28 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ↔ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) |
| 30 | 29 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 31 | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → 𝐹 Fn 𝑋 ) | |
| 32 | elpreima | ⊢ ( 𝐹 Fn 𝑋 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) ) | |
| 33 | 24 31 32 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐵 (,) +∞ ) ) ) ) |
| 34 | rabid | ⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ( 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ↔ ( 𝑥 ∈ 𝑋 ∧ 𝐵 < ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 36 | 30 33 35 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ↔ 𝑥 ∈ { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ) ) |
| 37 | 3 13 14 36 | eqrd | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) = { 𝑥 ∈ 𝑋 ∣ 𝐵 < ( 𝐹 ‘ 𝑥 ) } ) |
| 38 | 37 6 | eqtr4di | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) = 𝐴 ) |
| 39 | iooretop | ⊢ ( 𝐵 (,) +∞ ) ∈ ( topGen ‘ ran (,) ) | |
| 40 | 39 4 | eleqtrri | ⊢ ( 𝐵 (,) +∞ ) ∈ 𝐾 |
| 41 | cnima | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐵 (,) +∞ ) ∈ 𝐾 ) → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) | |
| 42 | 8 40 41 | sylancl | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( 𝐵 (,) +∞ ) ) ∈ 𝐽 ) |
| 43 | 38 42 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ 𝐽 ) |