This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ubelsupr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 = sup ( 𝐴 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝐴 ⊆ ℝ ) | |
| 2 | simp2 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ∈ 𝐴 ) | |
| 3 | 2 | ne0d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝐴 ≠ ∅ ) |
| 4 | 1 2 | sseldd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ∈ ℝ ) |
| 5 | simp3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) | |
| 6 | brralrspcev | ⊢ ( ( 𝑈 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) |
| 8 | 1 3 7 | 3jca | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ) |
| 9 | suprub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ) | |
| 10 | 8 2 9 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ) |
| 11 | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) ∧ 𝑈 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) ) | |
| 12 | 8 4 11 | syl2anc | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) ) |
| 13 | 5 12 | mpbird | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ) |
| 14 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 15 | 8 14 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) |
| 16 | 4 15 | letri3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → ( 𝑈 = sup ( 𝐴 , ℝ , < ) ↔ ( 𝑈 ≤ sup ( 𝐴 , ℝ , < ) ∧ sup ( 𝐴 , ℝ , < ) ≤ 𝑈 ) ) ) |
| 17 | 10 13 16 | mpbir2and | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ≤ 𝑈 ) → 𝑈 = sup ( 𝐴 , ℝ , < ) ) |