This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rfcnpre1.1 | |- F/_ x B |
|
| rfcnpre1.2 | |- F/_ x F |
||
| rfcnpre1.3 | |- F/ x ph |
||
| rfcnpre1.4 | |- K = ( topGen ` ran (,) ) |
||
| rfcnpre1.5 | |- X = U. J |
||
| rfcnpre1.6 | |- A = { x e. X | B < ( F ` x ) } |
||
| rfcnpre1.7 | |- ( ph -> B e. RR* ) |
||
| rfcnpre1.8 | |- ( ph -> F e. ( J Cn K ) ) |
||
| Assertion | rfcnpre1 | |- ( ph -> A e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre1.1 | |- F/_ x B |
|
| 2 | rfcnpre1.2 | |- F/_ x F |
|
| 3 | rfcnpre1.3 | |- F/ x ph |
|
| 4 | rfcnpre1.4 | |- K = ( topGen ` ran (,) ) |
|
| 5 | rfcnpre1.5 | |- X = U. J |
|
| 6 | rfcnpre1.6 | |- A = { x e. X | B < ( F ` x ) } |
|
| 7 | rfcnpre1.7 | |- ( ph -> B e. RR* ) |
|
| 8 | rfcnpre1.8 | |- ( ph -> F e. ( J Cn K ) ) |
|
| 9 | 2 | nfcnv | |- F/_ x `' F |
| 10 | nfcv | |- F/_ x (,) |
|
| 11 | nfcv | |- F/_ x +oo |
|
| 12 | 1 10 11 | nfov | |- F/_ x ( B (,) +oo ) |
| 13 | 9 12 | nfima | |- F/_ x ( `' F " ( B (,) +oo ) ) |
| 14 | nfrab1 | |- F/_ x { x e. X | B < ( F ` x ) } |
|
| 15 | cntop1 | |- ( F e. ( J Cn K ) -> J e. Top ) |
|
| 16 | 8 15 | syl | |- ( ph -> J e. Top ) |
| 17 | istopon | |- ( J e. ( TopOn ` X ) <-> ( J e. Top /\ X = U. J ) ) |
|
| 18 | 16 5 17 | sylanblrc | |- ( ph -> J e. ( TopOn ` X ) ) |
| 19 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 20 | 4 19 | eqeltri | |- K e. ( TopOn ` RR ) |
| 21 | iscn | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) ) -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) ) |
|
| 22 | 18 20 21 | sylancl | |- ( ph -> ( F e. ( J Cn K ) <-> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) ) |
| 23 | 8 22 | mpbid | |- ( ph -> ( F : X --> RR /\ A. y e. K ( `' F " y ) e. J ) ) |
| 24 | 23 | simpld | |- ( ph -> F : X --> RR ) |
| 25 | 24 | ffvelcdmda | |- ( ( ph /\ x e. X ) -> ( F ` x ) e. RR ) |
| 26 | elioopnf | |- ( B e. RR* -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) ) |
|
| 27 | 7 26 | syl | |- ( ph -> ( ( F ` x ) e. ( B (,) +oo ) <-> ( ( F ` x ) e. RR /\ B < ( F ` x ) ) ) ) |
| 28 | 27 | baibd | |- ( ( ph /\ ( F ` x ) e. RR ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) ) |
| 29 | 25 28 | syldan | |- ( ( ph /\ x e. X ) -> ( ( F ` x ) e. ( B (,) +oo ) <-> B < ( F ` x ) ) ) |
| 30 | 29 | pm5.32da | |- ( ph -> ( ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) <-> ( x e. X /\ B < ( F ` x ) ) ) ) |
| 31 | ffn | |- ( F : X --> RR -> F Fn X ) |
|
| 32 | elpreima | |- ( F Fn X -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) ) |
|
| 33 | 24 31 32 | 3syl | |- ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> ( x e. X /\ ( F ` x ) e. ( B (,) +oo ) ) ) ) |
| 34 | rabid | |- ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) ) |
|
| 35 | 34 | a1i | |- ( ph -> ( x e. { x e. X | B < ( F ` x ) } <-> ( x e. X /\ B < ( F ` x ) ) ) ) |
| 36 | 30 33 35 | 3bitr4d | |- ( ph -> ( x e. ( `' F " ( B (,) +oo ) ) <-> x e. { x e. X | B < ( F ` x ) } ) ) |
| 37 | 3 13 14 36 | eqrd | |- ( ph -> ( `' F " ( B (,) +oo ) ) = { x e. X | B < ( F ` x ) } ) |
| 38 | 37 6 | eqtr4di | |- ( ph -> ( `' F " ( B (,) +oo ) ) = A ) |
| 39 | iooretop | |- ( B (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 40 | 39 4 | eleqtrri | |- ( B (,) +oo ) e. K |
| 41 | cnima | |- ( ( F e. ( J Cn K ) /\ ( B (,) +oo ) e. K ) -> ( `' F " ( B (,) +oo ) ) e. J ) |
|
| 42 | 8 40 41 | sylancl | |- ( ph -> ( `' F " ( B (,) +oo ) ) e. J ) |
| 43 | 38 42 | eqeltrrd | |- ( ph -> A e. J ) |