This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017) (Proof shortened by BJ, 1-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| eqrd.1 | ⊢ Ⅎ 𝑥 𝐴 | ||
| eqrd.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| eqrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | ||
| Assertion | eqrd | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqrd.0 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | eqrd.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 3 | eqrd.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 4 | eqrd.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) | |
| 5 | 1 4 | alrimi | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 6 | 2 3 | cleqf | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) ) |
| 7 | 5 6 | sylibr | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) |