This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | |
| reslmhm.r | ⊢ 𝑅 = ( 𝑆 ↾s 𝑋 ) | ||
| Assertion | reslmhm | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 LMHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑆 ) | |
| 2 | reslmhm.r | ⊢ 𝑅 = ( 𝑆 ↾s 𝑋 ) | |
| 3 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 4 | 2 1 | lsslmod | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ LMod ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑅 ∈ LMod ) |
| 6 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑇 ∈ LMod ) |
| 8 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 9 | 1 | lsssubg | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 10 | 3 9 | sylan | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) |
| 11 | 2 | resghm | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 GrpHom 𝑇 ) ) |
| 12 | 8 10 11 | syl2an2r | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 GrpHom 𝑇 ) ) |
| 13 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 15 | 13 14 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 16 | 2 13 | resssca | ⊢ ( 𝑋 ∈ 𝑈 → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑅 ) ) |
| 17 | 15 16 | sylan9eq | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑅 ) ) |
| 18 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 19 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) | |
| 20 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 21 | 20 1 | lssss | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 24 | 2 20 | ressbas2 | ⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑅 ) ) |
| 25 | 22 24 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑋 = ( Base ‘ 𝑅 ) ) |
| 26 | 25 | eleq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑏 ∈ 𝑋 ↔ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) |
| 27 | 26 | biimpar | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) → 𝑏 ∈ 𝑋 ) |
| 28 | 27 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑏 ∈ 𝑋 ) |
| 29 | 23 28 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 31 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 32 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 33 | 13 30 20 31 32 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 34 | 18 19 29 33 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 35 | 3 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → 𝑆 ∈ LMod ) |
| 36 | 35 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑆 ∈ LMod ) |
| 37 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → 𝑋 ∈ 𝑈 ) | |
| 38 | 13 31 30 1 | lssvscl | ⊢ ( ( ( 𝑆 ∈ LMod ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
| 39 | 36 37 19 28 38 | syl22anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
| 40 | 39 | fvresd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) ) |
| 41 | fvres | ⊢ ( 𝑏 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝑏 ∈ 𝑋 → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 43 | 28 42 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 44 | 34 40 43 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑏 ∈ ( Base ‘ 𝑅 ) ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
| 45 | 44 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
| 46 | 16 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑅 ) ) |
| 47 | 46 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) ) |
| 48 | 2 31 | ressvsca | ⊢ ( 𝑋 ∈ 𝑈 → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑅 ) ) |
| 49 | 48 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑅 ) ) |
| 50 | 49 | oveqd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) = ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) |
| 51 | 50 | fveqeq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) ) |
| 52 | 51 | ralbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ↔ ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) ) |
| 53 | 47 52 | raleqbidv | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ↔ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) ) |
| 54 | 45 53 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
| 55 | 12 17 54 | 3jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑅 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) ) |
| 56 | eqid | ⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) | |
| 57 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑅 ) ) = ( Base ‘ ( Scalar ‘ 𝑅 ) ) | |
| 58 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 59 | eqid | ⊢ ( ·𝑠 ‘ 𝑅 ) = ( ·𝑠 ‘ 𝑅 ) | |
| 60 | 56 14 57 58 59 32 | islmhm | ⊢ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 LMHom 𝑇 ) ↔ ( ( 𝑅 ∈ LMod ∧ 𝑇 ∈ LMod ) ∧ ( ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 GrpHom 𝑇 ) ∧ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑅 ) ∧ ∀ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑅 ) ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( ·𝑠 ‘ 𝑅 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) ) ) |
| 61 | 5 7 55 60 | syl21anbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑋 ∈ 𝑈 ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑅 LMHom 𝑇 ) ) |