This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resghm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| Assertion | resghm | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resghm.u | ⊢ 𝑈 = ( 𝑆 ↾s 𝑋 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑈 ) = ( Base ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑈 ) = ( +g ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 6 | 1 | subggrp | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → 𝑈 ∈ Grp ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑈 ∈ Grp ) |
| 8 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑇 ∈ Grp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 11 | 10 3 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 12 | 10 | subgss | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 13 | fssres | ⊢ ( ( 𝐹 : ( Base ‘ 𝑆 ) ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ) |
| 15 | 12 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑋 ⊆ ( Base ‘ 𝑆 ) ) |
| 16 | 1 10 | ressbas2 | ⊢ ( 𝑋 ⊆ ( Base ‘ 𝑆 ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 17 | 15 16 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → 𝑋 = ( Base ‘ 𝑈 ) ) |
| 18 | 17 | feq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( 𝐹 ↾ 𝑋 ) : 𝑋 ⟶ ( Base ‘ 𝑇 ) ↔ ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) ) |
| 19 | 14 18 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) : ( Base ‘ 𝑈 ) ⟶ ( Base ‘ 𝑇 ) ) |
| 20 | eleq2 | ⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( 𝑎 ∈ 𝑋 ↔ 𝑎 ∈ ( Base ‘ 𝑈 ) ) ) | |
| 21 | eleq2 | ⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( 𝑏 ∈ 𝑋 ↔ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) | |
| 22 | 20 21 | anbi12d | ⊢ ( 𝑋 = ( Base ‘ 𝑈 ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ) |
| 23 | 17 22 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ↔ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) ) |
| 24 | 23 | biimpar | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) |
| 25 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 26 | 15 | sselda | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ 𝑎 ∈ 𝑋 ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 27 | 26 | adantrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑎 ∈ ( Base ‘ 𝑆 ) ) |
| 28 | 15 | sselda | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ 𝑏 ∈ 𝑋 ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 29 | 28 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → 𝑏 ∈ ( Base ‘ 𝑆 ) ) |
| 30 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 31 | 10 30 5 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 32 | 25 27 29 31 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 33 | 1 30 | ressplusg | ⊢ ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 34 | 33 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( +g ‘ 𝑆 ) = ( +g ‘ 𝑈 ) ) |
| 35 | 34 | oveqd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) = ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) |
| 36 | 35 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) ) |
| 37 | 30 | subgcl | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
| 38 | 37 | 3expb | ⊢ ( ( 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
| 39 | 38 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ∈ 𝑋 ) |
| 40 | 39 | fvresd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
| 41 | 36 40 | eqtr3d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( 𝐹 ‘ ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ) ) |
| 42 | fvres | ⊢ ( 𝑎 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) = ( 𝐹 ‘ 𝑎 ) ) | |
| 43 | fvres | ⊢ ( 𝑏 ∈ 𝑋 → ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 44 | 42 43 | oveqan12d | ⊢ ( ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 45 | 44 | adantl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ 𝑏 ) ) ) |
| 46 | 32 41 45 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
| 47 | 24 46 | syldan | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) ∧ ( 𝑎 ∈ ( Base ‘ 𝑈 ) ∧ 𝑏 ∈ ( Base ‘ 𝑈 ) ) ) → ( ( 𝐹 ↾ 𝑋 ) ‘ ( 𝑎 ( +g ‘ 𝑈 ) 𝑏 ) ) = ( ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑎 ) ( +g ‘ 𝑇 ) ( ( 𝐹 ↾ 𝑋 ) ‘ 𝑏 ) ) ) |
| 48 | 2 3 4 5 7 9 19 47 | isghmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑆 ) ) → ( 𝐹 ↾ 𝑋 ) ∈ ( 𝑈 GrpHom 𝑇 ) ) |