This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm.u | |- U = ( LSubSp ` S ) |
|
| reslmhm.r | |- R = ( S |`s X ) |
||
| Assertion | reslmhm | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( F |` X ) e. ( R LMHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm.u | |- U = ( LSubSp ` S ) |
|
| 2 | reslmhm.r | |- R = ( S |`s X ) |
|
| 3 | lmhmlmod1 | |- ( F e. ( S LMHom T ) -> S e. LMod ) |
|
| 4 | 2 1 | lsslmod | |- ( ( S e. LMod /\ X e. U ) -> R e. LMod ) |
| 5 | 3 4 | sylan | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> R e. LMod ) |
| 6 | lmhmlmod2 | |- ( F e. ( S LMHom T ) -> T e. LMod ) |
|
| 7 | 6 | adantr | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> T e. LMod ) |
| 8 | lmghm | |- ( F e. ( S LMHom T ) -> F e. ( S GrpHom T ) ) |
|
| 9 | 1 | lsssubg | |- ( ( S e. LMod /\ X e. U ) -> X e. ( SubGrp ` S ) ) |
| 10 | 3 9 | sylan | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X e. ( SubGrp ` S ) ) |
| 11 | 2 | resghm | |- ( ( F e. ( S GrpHom T ) /\ X e. ( SubGrp ` S ) ) -> ( F |` X ) e. ( R GrpHom T ) ) |
| 12 | 8 10 11 | syl2an2r | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( F |` X ) e. ( R GrpHom T ) ) |
| 13 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 14 | eqid | |- ( Scalar ` T ) = ( Scalar ` T ) |
|
| 15 | 13 14 | lmhmsca | |- ( F e. ( S LMHom T ) -> ( Scalar ` T ) = ( Scalar ` S ) ) |
| 16 | 2 13 | resssca | |- ( X e. U -> ( Scalar ` S ) = ( Scalar ` R ) ) |
| 17 | 15 16 | sylan9eq | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Scalar ` T ) = ( Scalar ` R ) ) |
| 18 | simpll | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> F e. ( S LMHom T ) ) |
|
| 19 | simprl | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> a e. ( Base ` ( Scalar ` S ) ) ) |
|
| 20 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 21 | 20 1 | lssss | |- ( X e. U -> X C_ ( Base ` S ) ) |
| 22 | 21 | adantl | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X C_ ( Base ` S ) ) |
| 23 | 22 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> X C_ ( Base ` S ) ) |
| 24 | 2 20 | ressbas2 | |- ( X C_ ( Base ` S ) -> X = ( Base ` R ) ) |
| 25 | 22 24 | syl | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> X = ( Base ` R ) ) |
| 26 | 25 | eleq2d | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( b e. X <-> b e. ( Base ` R ) ) ) |
| 27 | 26 | biimpar | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ b e. ( Base ` R ) ) -> b e. X ) |
| 28 | 27 | adantrl | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> b e. X ) |
| 29 | 23 28 | sseldd | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> b e. ( Base ` S ) ) |
| 30 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 31 | eqid | |- ( .s ` S ) = ( .s ` S ) |
|
| 32 | eqid | |- ( .s ` T ) = ( .s ` T ) |
|
| 33 | 13 30 20 31 32 | lmhmlin | |- ( ( F e. ( S LMHom T ) /\ a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` S ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 34 | 18 19 29 33 | syl3anc | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( F ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 35 | 3 | adantr | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> S e. LMod ) |
| 36 | 35 | adantr | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> S e. LMod ) |
| 37 | simplr | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> X e. U ) |
|
| 38 | 13 31 30 1 | lssvscl | |- ( ( ( S e. LMod /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. X ) ) -> ( a ( .s ` S ) b ) e. X ) |
| 39 | 36 37 19 28 38 | syl22anc | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( a ( .s ` S ) b ) e. X ) |
| 40 | 39 | fvresd | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( F ` ( a ( .s ` S ) b ) ) ) |
| 41 | fvres | |- ( b e. X -> ( ( F |` X ) ` b ) = ( F ` b ) ) |
|
| 42 | 41 | oveq2d | |- ( b e. X -> ( a ( .s ` T ) ( ( F |` X ) ` b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 43 | 28 42 | syl | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( a ( .s ` T ) ( ( F |` X ) ` b ) ) = ( a ( .s ` T ) ( F ` b ) ) ) |
| 44 | 34 40 43 | 3eqtr4d | |- ( ( ( F e. ( S LMHom T ) /\ X e. U ) /\ ( a e. ( Base ` ( Scalar ` S ) ) /\ b e. ( Base ` R ) ) ) -> ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
| 45 | 44 | ralrimivva | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
| 46 | 16 | adantl | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Scalar ` S ) = ( Scalar ` R ) ) |
| 47 | 46 | fveq2d | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` R ) ) ) |
| 48 | 2 31 | ressvsca | |- ( X e. U -> ( .s ` S ) = ( .s ` R ) ) |
| 49 | 48 | adantl | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( .s ` S ) = ( .s ` R ) ) |
| 50 | 49 | oveqd | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( a ( .s ` S ) b ) = ( a ( .s ` R ) b ) ) |
| 51 | 50 | fveqeq2d | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
| 52 | 51 | ralbidv | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
| 53 | 47 52 | raleqbidv | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( A. a e. ( Base ` ( Scalar ` S ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` S ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) <-> A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
| 54 | 45 53 | mpbid | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) |
| 55 | 12 17 54 | 3jca | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( ( F |` X ) e. ( R GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` R ) /\ A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) |
| 56 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 57 | eqid | |- ( Base ` ( Scalar ` R ) ) = ( Base ` ( Scalar ` R ) ) |
|
| 58 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 59 | eqid | |- ( .s ` R ) = ( .s ` R ) |
|
| 60 | 56 14 57 58 59 32 | islmhm | |- ( ( F |` X ) e. ( R LMHom T ) <-> ( ( R e. LMod /\ T e. LMod ) /\ ( ( F |` X ) e. ( R GrpHom T ) /\ ( Scalar ` T ) = ( Scalar ` R ) /\ A. a e. ( Base ` ( Scalar ` R ) ) A. b e. ( Base ` R ) ( ( F |` X ) ` ( a ( .s ` R ) b ) ) = ( a ( .s ` T ) ( ( F |` X ) ` b ) ) ) ) ) |
| 61 | 5 7 55 60 | syl21anbrc | |- ( ( F e. ( S LMHom T ) /\ X e. U ) -> ( F |` X ) e. ( R LMHom T ) ) |