This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | reslmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| reslmhm2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) | ||
| Assertion | reslmhm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reslmhm2.u | ⊢ 𝑈 = ( 𝑇 ↾s 𝑋 ) | |
| 2 | reslmhm2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 9 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → 𝑆 ∈ LMod ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑆 ∈ LMod ) |
| 11 | simp2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑇 ∈ LMod ) | |
| 12 | 1 7 | resssca | ⊢ ( 𝑋 ∈ 𝐿 → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑈 ) ) |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) | |
| 15 | 6 14 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑆 ) ) |
| 17 | 13 16 | eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 18 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) | |
| 19 | 18 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ) |
| 20 | 2 | lsssubg | ⊢ ( ( 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 21 | 20 | 3adant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) |
| 22 | 1 | resghm2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑈 ) ∧ 𝑋 ∈ ( SubGrp ‘ 𝑇 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 24 | eqid | ⊢ ( ·𝑠 ‘ 𝑈 ) = ( ·𝑠 ‘ 𝑈 ) | |
| 25 | 6 8 3 4 24 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 25 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | 26 | 3ad2antl1 | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | simpl3 | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → 𝑋 ∈ 𝐿 ) | |
| 29 | 1 5 | ressvsca | ⊢ ( 𝑋 ∈ 𝐿 → ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑈 ) ) |
| 30 | 29 | oveqd | ⊢ ( 𝑋 ∈ 𝐿 → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 31 | 28 30 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑈 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 32 | 27 31 | eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑆 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 33 | 3 4 5 6 7 8 10 11 17 23 32 | islmhmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑈 ) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) |