This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension of an injection which is a restriction of a function. (Contributed by AV, 3-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resf1extb | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | simp3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ⊆ 𝐴 ) | |
| 3 | eldifi | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ 𝐴 ) | |
| 4 | 3 | snssd | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → { 𝑋 } ⊆ 𝐴 ) |
| 5 | 4 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → { 𝑋 } ⊆ 𝐴 ) |
| 6 | 2 5 | unssd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐶 ∪ { 𝑋 } ) ⊆ 𝐴 ) |
| 7 | 1 6 | fssresd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) |
| 9 | elun | ⊢ ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ) | |
| 10 | elun | ⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) | |
| 11 | 9 10 | anbi12i | ⊢ ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) ↔ ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) ) |
| 12 | dff14a | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) | |
| 13 | neeq1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ≠ 𝑥 ↔ 𝑦 ≠ 𝑥 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑤 = 𝑦 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ) | |
| 15 | 14 | neeq1d | ⊢ ( 𝑤 = 𝑦 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) ) |
| 17 | neeq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ≠ 𝑥 ↔ 𝑦 ≠ 𝑧 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) = ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) | |
| 19 | 18 | neeq2d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ↔ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) |
| 20 | 17 19 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 21 | 16 20 | rspc2v | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ) |
| 22 | simpl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ 𝐶 ) | |
| 23 | 22 | fvresd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 24 | simpr | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐶 ) | |
| 25 | 24 | fvresd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 26 | 23 25 | neeq12d | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ↔ ( 𝑦 ≠ 𝑧 → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) ) |
| 28 | 27 | bi23imp13 | ⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) |
| 29 | elun1 | ⊢ ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 31 | 30 | fvresd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 32 | elun1 | ⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 33 | 32 | adantl | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 34 | 33 | fvresd | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 35 | 31 34 | neeq12d | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑧 ) ) ) |
| 37 | 28 36 | mpbird | ⊢ ( ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 38 | 37 | 3exp | ⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 39 | 21 38 | syldc | ⊢ ( ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 40 | 39 | adantl | ⊢ ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 41 | 40 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ ∀ 𝑤 ∈ 𝐶 ∀ 𝑥 ∈ 𝐶 ( 𝑤 ≠ 𝑥 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑤 ) ≠ ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑥 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 42 | 12 41 | biimtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 43 | 42 | a1dd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 44 | 43 | imp32 | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 45 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 46 | 45 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 47 | 46 2 | fvelimabd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 48 | 47 | notbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 49 | df-nel | ⊢ ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ¬ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝐶 ) ) | |
| 50 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ¬ ∃ 𝑥 ∈ 𝐶 ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 51 | 48 49 50 | 3bitr4g | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 52 | df-ne | ⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 53 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 54 | 53 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 55 | 52 54 | bitr3id | ⊢ ( 𝑥 = 𝑧 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 56 | 55 | rspcv | ⊢ ( 𝑧 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 57 | 56 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 58 | 32 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 59 | 58 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 60 | 59 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 61 | elsni | ⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 = 𝑋 ) | |
| 62 | 61 | eqcomd | ⊢ ( 𝑦 ∈ { 𝑋 } → 𝑋 = 𝑦 ) |
| 63 | 62 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑋 = 𝑦 ) |
| 64 | 63 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 65 | elun2 | ⊢ ( 𝑦 ∈ { 𝑋 } → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 66 | 65 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 67 | 66 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 68 | 64 67 | eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 69 | 60 68 | neeq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) ) |
| 70 | 69 | biimpa | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 71 | 70 | necomd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 72 | 71 | a1d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 73 | 72 | ex | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 74 | 57 73 | syld | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 75 | 74 | a1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 76 | 75 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 77 | 76 | com24 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 78 | 51 77 | sylbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 79 | 78 | impcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 80 | 79 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ 𝐶 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 81 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 82 | 81 | neeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 83 | 52 82 | bitr3id | ⊢ ( 𝑥 = 𝑦 → ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 84 | 83 | rspcv | ⊢ ( 𝑦 ∈ 𝐶 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 85 | 84 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 86 | 29 | ad2antrl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 87 | 86 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 88 | 87 | eqcomd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ) |
| 89 | elsni | ⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 = 𝑋 ) | |
| 90 | 89 | eqcomd | ⊢ ( 𝑧 ∈ { 𝑋 } → 𝑋 = 𝑧 ) |
| 91 | 90 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑋 = 𝑧 ) |
| 92 | 91 | fveq2d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 93 | elun2 | ⊢ ( 𝑧 ∈ { 𝑋 } → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 94 | 93 | ad2antll | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 95 | 94 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 96 | 92 95 | eqtr4d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( 𝐹 ‘ 𝑋 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) |
| 97 | 88 96 | neeq12d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 98 | 97 | biimpd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 99 | 98 | a1dd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ‘ 𝑦 ) ≠ ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 100 | 85 99 | syld | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 101 | 100 | a1d | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 102 | 101 | ex | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 103 | 102 | com24 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 104 | 51 103 | sylbid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) ) |
| 105 | 104 | impcomd | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) ) |
| 106 | 105 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ 𝐶 ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 107 | velsn | ⊢ ( 𝑦 ∈ { 𝑋 } ↔ 𝑦 = 𝑋 ) | |
| 108 | velsn | ⊢ ( 𝑧 ∈ { 𝑋 } ↔ 𝑧 = 𝑋 ) | |
| 109 | eqtr3 | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → 𝑦 = 𝑧 ) | |
| 110 | eqneqall | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) | |
| 111 | 109 110 | syl | ⊢ ( ( 𝑦 = 𝑋 ∧ 𝑧 = 𝑋 ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 112 | 107 108 111 | syl2anb | ⊢ ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 113 | 112 | a1i | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ { 𝑋 } ∧ 𝑧 ∈ { 𝑋 } ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 114 | 44 80 106 113 | ccased | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( ( 𝑦 ∈ 𝐶 ∨ 𝑦 ∈ { 𝑋 } ) ∧ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 115 | 11 114 | biimtrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( ( 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 116 | 115 | ralrimivv | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 117 | dff14a | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) | |
| 118 | 8 116 117 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) → ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) |
| 119 | fssres | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) | |
| 120 | 119 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 121 | 120 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ) |
| 122 | df-f1 | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ) ) | |
| 123 | funres11 | ⊢ ( Fun ◡ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) | |
| 124 | 122 123 | simplbiim | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 125 | 124 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 126 | ssun1 | ⊢ 𝐶 ⊆ ( 𝐶 ∪ { 𝑋 } ) | |
| 127 | 126 | resabs1i | ⊢ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) = ( 𝐹 ↾ 𝐶 ) |
| 128 | 127 | eqcomi | ⊢ ( 𝐹 ↾ 𝐶 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
| 129 | 128 | cnveqi | ⊢ ◡ ( 𝐹 ↾ 𝐶 ) = ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) |
| 130 | 129 | funeqi | ⊢ ( Fun ◡ ( 𝐹 ↾ 𝐶 ) ↔ Fun ◡ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ↾ 𝐶 ) ) |
| 131 | 125 130 | sylibr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → Fun ◡ ( 𝐹 ↾ 𝐶 ) ) |
| 132 | df-f1 | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ↔ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ 𝐵 ∧ Fun ◡ ( 𝐹 ↾ 𝐶 ) ) ) | |
| 133 | 121 131 132 | sylanbrc | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) |
| 134 | elun1 | ⊢ ( 𝑥 ∈ 𝐶 → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 135 | snidg | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ { 𝑋 } ) | |
| 136 | 135 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ { 𝑋 } ) |
| 137 | elun2 | ⊢ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) | |
| 138 | 136 137 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 139 | neeq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≠ 𝑧 ↔ 𝑥 ≠ 𝑧 ) ) | |
| 140 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ) | |
| 141 | 140 | neeq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) |
| 142 | 139 141 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) ) |
| 143 | neeq2 | ⊢ ( 𝑧 = 𝑋 → ( 𝑥 ≠ 𝑧 ↔ 𝑥 ≠ 𝑋 ) ) | |
| 144 | fveq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) = ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) | |
| 145 | 144 | neeq2d | ⊢ ( 𝑧 = 𝑋 → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ↔ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
| 146 | 143 145 | imbi12d | ⊢ ( 𝑧 = 𝑋 → ( ( 𝑥 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ↔ ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 147 | 142 146 | rspc2v | ⊢ ( ( 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ∧ 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 148 | 134 138 147 | syl2anr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 149 | 148 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) ) |
| 150 | eldifn | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ¬ 𝑋 ∈ 𝐶 ) | |
| 151 | nelelne | ⊢ ( ¬ 𝑋 ∈ 𝐶 → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) | |
| 152 | 150 151 | syl | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
| 153 | 152 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( 𝑥 ∈ 𝐶 → 𝑥 ≠ 𝑋 ) ) |
| 154 | 153 | imp | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ≠ 𝑋 ) |
| 155 | 154 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ≠ 𝑋 ) |
| 156 | pm2.27 | ⊢ ( 𝑥 ≠ 𝑋 → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) | |
| 157 | 155 156 | syl | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) ) |
| 158 | 134 | adantl | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 159 | 158 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → 𝑥 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 160 | 159 | fvresd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 161 | 135 137 | syl | ⊢ ( 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 162 | 161 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 163 | 162 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → 𝑋 ∈ ( 𝐶 ∪ { 𝑋 } ) ) |
| 164 | 163 | fvresd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 165 | 164 | adantr | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 166 | 160 165 | neeq12d | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 167 | 157 166 | sylibd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ( 𝑥 ≠ 𝑋 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑥 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑋 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 168 | 149 167 | syld | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ) → ( ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 169 | 168 | expimpd | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) ⟶ 𝐵 ∧ ∀ 𝑦 ∈ ( 𝐶 ∪ { 𝑋 } ) ∀ 𝑧 ∈ ( 𝐶 ∪ { 𝑋 } ) ( 𝑦 ≠ 𝑧 → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑦 ) ≠ ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) ‘ 𝑧 ) ) ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 170 | 117 169 | biimtrid | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 171 | 170 | impancom | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝑥 ∈ 𝐶 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) ) |
| 172 | 171 | imp | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑋 ) ) |
| 173 | 172 | neneqd | ⊢ ( ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ 𝐶 ) → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 174 | 173 | ralrimiva | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 175 | 51 | adantr | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐶 ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 176 | 174 175 | mpbird | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) |
| 177 | 133 176 | jca | ⊢ ( ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) ∧ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ) |
| 178 | 118 177 | impbida | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑋 ∈ ( 𝐴 ∖ 𝐶 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ∧ ( 𝐹 ‘ 𝑋 ) ∉ ( 𝐹 “ 𝐶 ) ) ↔ ( 𝐹 ↾ ( 𝐶 ∪ { 𝑋 } ) ) : ( 𝐶 ∪ { 𝑋 } ) –1-1→ 𝐵 ) ) |