This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dff14a | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) | |
| 2 | con34b | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ¬ 𝑥 = 𝑦 → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ) | |
| 3 | df-ne | ⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) | |
| 4 | 3 | bicomi | ⊢ ( ¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦 ) |
| 5 | df-ne | ⊢ ( ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 6 | 5 | bicomi | ⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) |
| 7 | 4 6 | imbi12i | ⊢ ( ( ¬ 𝑥 = 𝑦 → ¬ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 8 | 2 7 | bitri | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 9 | 8 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 | 9 | anbi2i | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 11 | 1 10 | bitri | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 ↔ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 ≠ 𝑦 → ( 𝐹 ‘ 𝑥 ) ≠ ( 𝐹 ‘ 𝑦 ) ) ) ) |