This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for regr1 . (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| regr1lem.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| regr1lem.3 | ⊢ ( 𝜑 → 𝐽 ∈ Reg ) | ||
| regr1lem.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| regr1lem.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | ||
| regr1lem.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | ||
| regr1lem.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) | ||
| Assertion | regr1lem | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑈 → 𝐵 ∈ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | regr1lem.2 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | regr1lem.3 | ⊢ ( 𝜑 → 𝐽 ∈ Reg ) | |
| 4 | regr1lem.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 5 | regr1lem.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | |
| 6 | regr1lem.6 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐽 ) | |
| 7 | regr1lem.7 | ⊢ ( 𝜑 → ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝐽 ∈ Reg ) |
| 9 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝑈 ∈ 𝐽 ) |
| 10 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ 𝑈 ) | |
| 11 | regsep | ⊢ ( ( 𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) | |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → ∃ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) |
| 13 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 14 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 15 | simplrl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝑧 ∈ 𝐽 ) | |
| 16 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 17 | 14 15 16 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 18 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 19 | 14 18 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝑋 = ∪ 𝐽 ) |
| 20 | 19 | difeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) = ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) |
| 21 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 22 | 14 21 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐽 ∈ Top ) |
| 23 | elssuni | ⊢ ( 𝑧 ∈ 𝐽 → 𝑧 ⊆ ∪ 𝐽 ) | |
| 24 | 15 23 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝑧 ⊆ ∪ 𝐽 ) |
| 25 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 26 | 25 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 27 | 22 24 26 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 28 | 25 | cldopn | ⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ∈ ( Clsd ‘ 𝐽 ) → ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ∈ 𝐽 ) |
| 29 | 27 28 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( ∪ 𝐽 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ∈ 𝐽 ) |
| 30 | 20 29 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ∈ 𝐽 ) |
| 31 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ∈ 𝐽 ) → ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ∈ ( KQ ‘ 𝐽 ) ) |
| 32 | 14 30 31 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ∈ ( KQ ‘ 𝐽 ) ) |
| 33 | simprrl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → 𝐴 ∈ 𝑧 ) | |
| 34 | 33 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐴 ∈ 𝑧 ) |
| 35 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐴 ∈ 𝑋 ) |
| 36 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ) ) |
| 37 | 14 15 35 36 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐴 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ) ) |
| 38 | 34 37 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ) |
| 39 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐵 ∈ 𝑋 ) |
| 40 | simprrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) | |
| 41 | 40 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → ( 𝐵 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) → 𝐵 ∈ 𝑈 ) ) |
| 42 | 41 | con3dimp | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ¬ 𝐵 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) |
| 43 | 39 42 | eldifd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝐵 ∈ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) |
| 44 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ∈ 𝐽 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 ∈ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ) |
| 45 | 14 30 39 44 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐵 ∈ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ) |
| 46 | 43 45 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) |
| 47 | 25 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ⊆ ∪ 𝐽 ) → 𝑧 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) |
| 48 | 22 24 47 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → 𝑧 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) |
| 49 | 48 | sscond | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ⊆ ( 𝑋 ∖ 𝑧 ) ) |
| 50 | imass2 | ⊢ ( ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ⊆ ( 𝑋 ∖ 𝑧 ) → ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) | |
| 51 | sslin | ⊢ ( ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ⊆ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ⊆ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) ) | |
| 52 | 49 50 51 | 3syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ⊆ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) ) |
| 53 | 1 | kqdisj | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) = ∅ ) |
| 54 | 14 15 53 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) = ∅ ) |
| 55 | sseq0 | ⊢ ( ( ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ⊆ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) ∧ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ 𝑧 ) ) ) = ∅ ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) = ∅ ) | |
| 56 | 52 54 55 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) = ∅ ) |
| 57 | eleq2 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑧 ) → ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ) ) | |
| 58 | ineq1 | ⊢ ( 𝑚 = ( 𝐹 “ 𝑧 ) → ( 𝑚 ∩ 𝑛 ) = ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) ) | |
| 59 | 58 | eqeq1d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑧 ) → ( ( 𝑚 ∩ 𝑛 ) = ∅ ↔ ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) = ∅ ) ) |
| 60 | 57 59 | 3anbi13d | ⊢ ( 𝑚 = ( 𝐹 “ 𝑧 ) → ( ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) = ∅ ) ) ) |
| 61 | eleq2 | ⊢ ( 𝑛 = ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ) | |
| 62 | ineq2 | ⊢ ( 𝑛 = ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) → ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) = ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) ) | |
| 63 | 62 | eqeq1d | ⊢ ( 𝑛 = ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) → ( ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) = ∅ ↔ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) = ∅ ) ) |
| 64 | 61 63 | 3anbi23d | ⊢ ( 𝑛 = ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) → ( ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( ( 𝐹 “ 𝑧 ) ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ∧ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) = ∅ ) ) ) |
| 65 | 60 64 | rspc2ev | ⊢ ( ( ( 𝐹 “ 𝑧 ) ∈ ( KQ ‘ 𝐽 ) ∧ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ∈ ( KQ ‘ 𝐽 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 𝐹 “ 𝑧 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ∧ ( ( 𝐹 “ 𝑧 ) ∩ ( 𝐹 “ ( 𝑋 ∖ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ) ) ) = ∅ ) ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 66 | 17 32 38 46 56 65 | syl113anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) ∧ ¬ 𝐵 ∈ 𝑈 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) |
| 67 | 66 | ex | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → ( ¬ 𝐵 ∈ 𝑈 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝐴 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 68 | 13 67 | mt3d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) ∧ ( 𝑧 ∈ 𝐽 ∧ ( 𝐴 ∈ 𝑧 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑧 ) ⊆ 𝑈 ) ) ) → 𝐵 ∈ 𝑈 ) |
| 69 | 12 68 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ 𝑈 ) → 𝐵 ∈ 𝑈 ) |
| 70 | 69 | ex | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝑈 → 𝐵 ∈ 𝑈 ) ) |