This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Kolmogorov quotient of a regular space is Hausdorff. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | regr1lem2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | simplll | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | simpllr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝐽 ∈ Reg ) | |
| 4 | simplrl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑧 ∈ 𝑋 ) | |
| 5 | simplrr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑤 ∈ 𝑋 ) | |
| 6 | simprl | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → 𝑎 ∈ 𝐽 ) | |
| 7 | simprr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) | |
| 8 | 1 2 3 4 5 6 7 | regr1lem | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑧 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
| 9 | 3ancoma | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) | |
| 10 | incom | ⊢ ( 𝑚 ∩ 𝑛 ) = ( 𝑛 ∩ 𝑚 ) | |
| 11 | 10 | eqeq1i | ⊢ ( ( 𝑚 ∩ 𝑛 ) = ∅ ↔ ( 𝑛 ∩ 𝑚 ) = ∅ ) |
| 12 | 11 | 3anbi3i | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 13 | 9 12 | bitri | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 14 | 13 | 2rexbii | ⊢ ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 15 | rexcom | ⊢ ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 17 | 7 16 | sylnib | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ¬ ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| 18 | 1 2 3 5 4 6 17 | regr1lem | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑤 ∈ 𝑎 → 𝑧 ∈ 𝑎 ) ) |
| 19 | 8 18 | impbid | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ ( 𝑎 ∈ 𝐽 ∧ ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) → ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) |
| 20 | 19 | expr | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) ∧ 𝑎 ∈ 𝐽 ) → ( ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 21 | 20 | ralrimdva | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ∀ 𝑎 ∈ 𝐽 ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 22 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ) ) |
| 23 | elequ2 | ⊢ ( 𝑦 = 𝑎 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑎 ) ) | |
| 24 | elequ2 | ⊢ ( 𝑦 = 𝑎 → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑎 ) ) | |
| 25 | 23 24 | bibi12d | ⊢ ( 𝑦 = 𝑎 → ( ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ↔ ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 26 | 25 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑧 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) ↔ ∀ 𝑎 ∈ 𝐽 ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) |
| 27 | 22 26 | bitrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑎 ∈ 𝐽 ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 28 | 27 | 3expb | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑎 ∈ 𝐽 ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 29 | 28 | adantlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ↔ ∀ 𝑎 ∈ 𝐽 ( 𝑧 ∈ 𝑎 ↔ 𝑤 ∈ 𝑎 ) ) ) |
| 30 | 21 29 | sylibrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ¬ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 31 | 30 | necon1ad | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 32 | 31 | ralrimivva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 33 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → 𝐹 Fn 𝑋 ) |
| 35 | neeq1 | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 ≠ 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 ) ) | |
| 36 | eleq1 | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( 𝑎 ∈ 𝑚 ↔ ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ) ) | |
| 37 | 36 | 3anbi1d | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 38 | 37 | 2rexbidv | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 39 | 35 38 | imbi12d | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑎 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑏 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 41 | 40 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 42 | neeq2 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 ↔ ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) ) ) | |
| 43 | eleq1 | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( 𝑏 ∈ 𝑛 ↔ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ) ) | |
| 44 | 43 | 3anbi2d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 45 | 44 | 2rexbidv | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ↔ ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 46 | 42 45 | imbi12d | ⊢ ( 𝑏 = ( 𝐹 ‘ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 47 | 46 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑏 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 48 | 47 | ralbidv | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑧 ∈ 𝑋 ∀ 𝑏 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑧 ) ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 49 | 41 48 | bitrd | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 50 | 34 49 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ≠ ( 𝐹 ‘ 𝑤 ) → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑚 ∧ ( 𝐹 ‘ 𝑤 ) ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 51 | 32 50 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) |
| 52 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 53 | 52 | adantr | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 54 | ishaus2 | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Haus ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( ( KQ ‘ 𝐽 ) ∈ Haus ↔ ∀ 𝑎 ∈ ran 𝐹 ∀ 𝑏 ∈ ran 𝐹 ( 𝑎 ≠ 𝑏 → ∃ 𝑚 ∈ ( KQ ‘ 𝐽 ) ∃ 𝑛 ∈ ( KQ ‘ 𝐽 ) ( 𝑎 ∈ 𝑚 ∧ 𝑏 ∈ 𝑛 ∧ ( 𝑚 ∩ 𝑛 ) = ∅ ) ) ) ) |
| 56 | 51 55 | mpbird | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ Reg ) → ( KQ ‘ 𝐽 ) ∈ Haus ) |