This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for regr1 . (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| regr1lem.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| regr1lem.3 | |- ( ph -> J e. Reg ) |
||
| regr1lem.4 | |- ( ph -> A e. X ) |
||
| regr1lem.5 | |- ( ph -> B e. X ) |
||
| regr1lem.6 | |- ( ph -> U e. J ) |
||
| regr1lem.7 | |- ( ph -> -. E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) |
||
| Assertion | regr1lem | |- ( ph -> ( A e. U -> B e. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | |- F = ( x e. X |-> { y e. J | x e. y } ) |
|
| 2 | regr1lem.2 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 3 | regr1lem.3 | |- ( ph -> J e. Reg ) |
|
| 4 | regr1lem.4 | |- ( ph -> A e. X ) |
|
| 5 | regr1lem.5 | |- ( ph -> B e. X ) |
|
| 6 | regr1lem.6 | |- ( ph -> U e. J ) |
|
| 7 | regr1lem.7 | |- ( ph -> -. E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) |
|
| 8 | 3 | adantr | |- ( ( ph /\ A e. U ) -> J e. Reg ) |
| 9 | 6 | adantr | |- ( ( ph /\ A e. U ) -> U e. J ) |
| 10 | simpr | |- ( ( ph /\ A e. U ) -> A e. U ) |
|
| 11 | regsep | |- ( ( J e. Reg /\ U e. J /\ A e. U ) -> E. z e. J ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) |
|
| 12 | 8 9 10 11 | syl3anc | |- ( ( ph /\ A e. U ) -> E. z e. J ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) |
| 13 | 7 | ad2antrr | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> -. E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) |
| 14 | 2 | ad3antrrr | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> J e. ( TopOn ` X ) ) |
| 15 | simplrl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> z e. J ) |
|
| 16 | 1 | kqopn | |- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( F " z ) e. ( KQ ` J ) ) |
| 17 | 14 15 16 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( F " z ) e. ( KQ ` J ) ) |
| 18 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 19 | 14 18 | syl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> X = U. J ) |
| 20 | 19 | difeq1d | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( X \ ( ( cls ` J ) ` z ) ) = ( U. J \ ( ( cls ` J ) ` z ) ) ) |
| 21 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 22 | 14 21 | syl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> J e. Top ) |
| 23 | elssuni | |- ( z e. J -> z C_ U. J ) |
|
| 24 | 15 23 | syl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> z C_ U. J ) |
| 25 | eqid | |- U. J = U. J |
|
| 26 | 25 | clscld | |- ( ( J e. Top /\ z C_ U. J ) -> ( ( cls ` J ) ` z ) e. ( Clsd ` J ) ) |
| 27 | 22 24 26 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( ( cls ` J ) ` z ) e. ( Clsd ` J ) ) |
| 28 | 25 | cldopn | |- ( ( ( cls ` J ) ` z ) e. ( Clsd ` J ) -> ( U. J \ ( ( cls ` J ) ` z ) ) e. J ) |
| 29 | 27 28 | syl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( U. J \ ( ( cls ` J ) ` z ) ) e. J ) |
| 30 | 20 29 | eqeltrd | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( X \ ( ( cls ` J ) ` z ) ) e. J ) |
| 31 | 1 | kqopn | |- ( ( J e. ( TopOn ` X ) /\ ( X \ ( ( cls ` J ) ` z ) ) e. J ) -> ( F " ( X \ ( ( cls ` J ) ` z ) ) ) e. ( KQ ` J ) ) |
| 32 | 14 30 31 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( F " ( X \ ( ( cls ` J ) ` z ) ) ) e. ( KQ ` J ) ) |
| 33 | simprrl | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> A e. z ) |
|
| 34 | 33 | adantr | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> A e. z ) |
| 35 | 4 | ad3antrrr | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> A e. X ) |
| 36 | 1 | kqfvima | |- ( ( J e. ( TopOn ` X ) /\ z e. J /\ A e. X ) -> ( A e. z <-> ( F ` A ) e. ( F " z ) ) ) |
| 37 | 14 15 35 36 | syl3anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( A e. z <-> ( F ` A ) e. ( F " z ) ) ) |
| 38 | 34 37 | mpbid | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( F ` A ) e. ( F " z ) ) |
| 39 | 5 | ad3antrrr | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> B e. X ) |
| 40 | simprrr | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> ( ( cls ` J ) ` z ) C_ U ) |
|
| 41 | 40 | sseld | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> ( B e. ( ( cls ` J ) ` z ) -> B e. U ) ) |
| 42 | 41 | con3dimp | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> -. B e. ( ( cls ` J ) ` z ) ) |
| 43 | 39 42 | eldifd | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> B e. ( X \ ( ( cls ` J ) ` z ) ) ) |
| 44 | 1 | kqfvima | |- ( ( J e. ( TopOn ` X ) /\ ( X \ ( ( cls ` J ) ` z ) ) e. J /\ B e. X ) -> ( B e. ( X \ ( ( cls ` J ) ` z ) ) <-> ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) ) |
| 45 | 14 30 39 44 | syl3anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( B e. ( X \ ( ( cls ` J ) ` z ) ) <-> ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) ) |
| 46 | 43 45 | mpbid | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) |
| 47 | 25 | sscls | |- ( ( J e. Top /\ z C_ U. J ) -> z C_ ( ( cls ` J ) ` z ) ) |
| 48 | 22 24 47 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> z C_ ( ( cls ` J ) ` z ) ) |
| 49 | 48 | sscond | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( X \ ( ( cls ` J ) ` z ) ) C_ ( X \ z ) ) |
| 50 | imass2 | |- ( ( X \ ( ( cls ` J ) ` z ) ) C_ ( X \ z ) -> ( F " ( X \ ( ( cls ` J ) ` z ) ) ) C_ ( F " ( X \ z ) ) ) |
|
| 51 | sslin | |- ( ( F " ( X \ ( ( cls ` J ) ` z ) ) ) C_ ( F " ( X \ z ) ) -> ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) C_ ( ( F " z ) i^i ( F " ( X \ z ) ) ) ) |
|
| 52 | 49 50 51 | 3syl | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) C_ ( ( F " z ) i^i ( F " ( X \ z ) ) ) ) |
| 53 | 1 | kqdisj | |- ( ( J e. ( TopOn ` X ) /\ z e. J ) -> ( ( F " z ) i^i ( F " ( X \ z ) ) ) = (/) ) |
| 54 | 14 15 53 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( ( F " z ) i^i ( F " ( X \ z ) ) ) = (/) ) |
| 55 | sseq0 | |- ( ( ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) C_ ( ( F " z ) i^i ( F " ( X \ z ) ) ) /\ ( ( F " z ) i^i ( F " ( X \ z ) ) ) = (/) ) -> ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) = (/) ) |
|
| 56 | 52 54 55 | syl2anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) = (/) ) |
| 57 | eleq2 | |- ( m = ( F " z ) -> ( ( F ` A ) e. m <-> ( F ` A ) e. ( F " z ) ) ) |
|
| 58 | ineq1 | |- ( m = ( F " z ) -> ( m i^i n ) = ( ( F " z ) i^i n ) ) |
|
| 59 | 58 | eqeq1d | |- ( m = ( F " z ) -> ( ( m i^i n ) = (/) <-> ( ( F " z ) i^i n ) = (/) ) ) |
| 60 | 57 59 | 3anbi13d | |- ( m = ( F " z ) -> ( ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) <-> ( ( F ` A ) e. ( F " z ) /\ ( F ` B ) e. n /\ ( ( F " z ) i^i n ) = (/) ) ) ) |
| 61 | eleq2 | |- ( n = ( F " ( X \ ( ( cls ` J ) ` z ) ) ) -> ( ( F ` B ) e. n <-> ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) ) |
|
| 62 | ineq2 | |- ( n = ( F " ( X \ ( ( cls ` J ) ` z ) ) ) -> ( ( F " z ) i^i n ) = ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) ) |
|
| 63 | 62 | eqeq1d | |- ( n = ( F " ( X \ ( ( cls ` J ) ` z ) ) ) -> ( ( ( F " z ) i^i n ) = (/) <-> ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) = (/) ) ) |
| 64 | 61 63 | 3anbi23d | |- ( n = ( F " ( X \ ( ( cls ` J ) ` z ) ) ) -> ( ( ( F ` A ) e. ( F " z ) /\ ( F ` B ) e. n /\ ( ( F " z ) i^i n ) = (/) ) <-> ( ( F ` A ) e. ( F " z ) /\ ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) /\ ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) = (/) ) ) ) |
| 65 | 60 64 | rspc2ev | |- ( ( ( F " z ) e. ( KQ ` J ) /\ ( F " ( X \ ( ( cls ` J ) ` z ) ) ) e. ( KQ ` J ) /\ ( ( F ` A ) e. ( F " z ) /\ ( F ` B ) e. ( F " ( X \ ( ( cls ` J ) ` z ) ) ) /\ ( ( F " z ) i^i ( F " ( X \ ( ( cls ` J ) ` z ) ) ) ) = (/) ) ) -> E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) |
| 66 | 17 32 38 46 56 65 | syl113anc | |- ( ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) /\ -. B e. U ) -> E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) |
| 67 | 66 | ex | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> ( -. B e. U -> E. m e. ( KQ ` J ) E. n e. ( KQ ` J ) ( ( F ` A ) e. m /\ ( F ` B ) e. n /\ ( m i^i n ) = (/) ) ) ) |
| 68 | 13 67 | mt3d | |- ( ( ( ph /\ A e. U ) /\ ( z e. J /\ ( A e. z /\ ( ( cls ` J ) ` z ) C_ U ) ) ) -> B e. U ) |
| 69 | 12 68 | rexlimddv | |- ( ( ph /\ A e. U ) -> B e. U ) |
| 70 | 69 | ex | |- ( ph -> ( A e. U -> B e. U ) ) |